Improved Optimistic Algorithms for Logistic Bandits
暂无分享,去创建一个
Marc Abeille | Olivier Fercoq | Louis Faury | Cl'ement Calauzenes | Olivier Fercoq | Marc Abeille | Louis Faury | Clément Calauzènes
[1] Barbara E. Engelhardt,et al. PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits , 2018, NeurIPS.
[2] Robert D. Nowak,et al. Scalable Generalized Linear Bandits: Online Computation and Hashing , 2017, NIPS.
[3] Shi Dong,et al. An Information-Theoretic Analysis for Thompson Sampling with Many Actions , 2018, NeurIPS.
[4] Lihong Li,et al. Provable Optimal Algorithms for Generalized Linear Contextual Bandits , 2017, ArXiv.
[5] Csaba Szepesvári,et al. Improved Algorithms for Linear Stochastic Bandits , 2011, NIPS.
[6] Alessandro Lazaric,et al. Linear Thompson Sampling Revisited , 2016, AISTATS.
[7] T. Lai,et al. SELF-NORMALIZED PROCESSES: EXPONENTIAL INEQUALITIES, MOMENT BOUNDS AND ITERATED LOGARITHM LAWS , 2004, math/0410102.
[8] Nello Cristianini,et al. Finite-Time Analysis of Kernelised Contextual Bandits , 2013, UAI.
[9] John N. Tsitsiklis,et al. Linearly Parameterized Bandits , 2008, Math. Oper. Res..
[10] Aurélien Garivier,et al. Parametric Bandits: The Generalized Linear Case , 2010, NIPS.
[11] Thomas P. Hayes,et al. Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.
[12] Benjamin Van Roy,et al. Eluder Dimension and the Sample Complexity of Optimistic Exploration , 2013, NIPS.
[13] Francis R. Bach,et al. Self-concordant analysis for logistic regression , 2009, ArXiv.
[14] Benjamin Van Roy,et al. Learning to Optimize via Posterior Sampling , 2013, Math. Oper. Res..
[15] Tengyu Ma,et al. On the Performance of Thompson Sampling on Logistic Bandits , 2019, COLT.