COH-fluid induced metasomatism of peridotites in the forearc mantle

[1]  D. Roerdink,et al.  Feedback mechanisms in mineral replacement networks: an experimental investigation of the ultramafic model system , 2021 .

[2]  J. Hermann,et al.  Investigation of Fluid-driven Carbonation of a Hydrated, Forearc Mantle Wedge using Serpentinite Cores in High-pressure Experiments , 2020 .

[3]  C. Manning,et al.  Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones , 2020 .

[4]  F. Miozzi,et al.  Aqueous concentration of CO2 in carbon-saturated fluids as a highly sensitive oxybarometer , 2020 .

[5]  M. Ziegler,et al.  Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project , 2019, Journal of Geophysical Research: Solid Earth.

[6]  C. Garrido,et al.  Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada) , 2018, Lithos.

[7]  J. Hermann,et al.  An experimental investigation of C–O–H fluid-driven carbonation of serpentinites under forearc conditions , 2018, Earth and Planetary Science Letters.

[8]  J. Ague,et al.  Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica , 2018 .

[9]  J. Hermann,et al.  Experimental Phase Relations in Altered Oceanic Crust: Implications for Carbon Recycling at Subduction Zones , 2018 .

[10]  T. Pettke,et al.  Silicate dissolution boosts the CO2 concentrations in subduction fluids , 2017, Nature Communications.

[11]  P. D. Brown,et al.  An Experimental Study of the Carbonation of Serpentinite and Partially Serpentinised Peridotites , 2017, Front. Earth Sci..

[12]  I. Estève,et al.  Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps , 2017, Nature Communications.

[13]  S. Sylva,et al.  Experimental study of carbonate formation in oceanic peridotite , 2017 .

[14]  T. Pettke,et al.  Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite , 2017, Contributions to Mineralogy and Petrology.

[15]  L. Crispini,et al.  Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling , 2016 .

[16]  I. Martinez,et al.  Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones , 2016 .

[17]  C. Vollmer,et al.  Formation of Mg-rich Olivine Pseudomorphs in Serpentinized Dunite from the Mesoarchean Nuasahi Massif, Eastern India: Insights into the Evolution of Fluid Composition at the Mineral–Fluid Interface , 2016 .

[18]  P. Kelemen,et al.  Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement , 2015 .

[19]  S. Poli Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids , 2015 .

[20]  R. Pedersen,et al.  Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway , 2015 .

[21]  P. Kelemen,et al.  Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up , 2015, Proceedings of the National Academy of Sciences.

[22]  S. Nicolescu,et al.  Carbon dioxide released from subduction zones by fluid-mediated reactions , 2014 .

[23]  R. Chiriac,et al.  Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity , 2014 .

[24]  Olivier Vidal,et al.  XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry , 2014, Comput. Geosci..

[25]  K. Benzerara,et al.  Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France) , 2013, Contributions to Mineralogy and Petrology.

[26]  C. Garrido,et al.  Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites , 2013 .

[27]  J. Malavieille,et al.  Graphite formation by carbonate reduction during subduction , 2013 .

[28]  D. Harlov,et al.  Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes , 2013 .

[29]  B. Jamtveit,et al.  Microstructure and porosity evolution during experimental carbonation of a natural peridotite , 2012 .

[30]  B. Jamtveit,et al.  The interface-scale mechanism of reaction-induced fracturing during serpentinization , 2012 .

[31]  B. Jamtveit,et al.  Massive serpentinite carbonation at Linnajavri, N–Norway , 2012 .

[32]  P. Kelemen,et al.  Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation , 2012 .

[33]  F. Brunet,et al.  Low-temperature Wollastonite Formed by Carbonate Reduction: a Marker of Serpentinite Redox Conditions , 2012 .

[34]  C. Vollmer,et al.  The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization , 2012, Contributions to Mineralogy and Petrology.

[35]  H. Austrheim,et al.  Experimental study of the carbonation of partially serpentinized and weathered peridotites , 2011 .

[36]  John Frederick Rudge,et al.  Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage , 2011 .

[37]  S. Foley A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time , 2011 .

[38]  J. Huizenga Thermodynamic modelling of a cooling C–O–H fluid–graphite system: implications for hydrothermal graphite precipitation , 2011 .

[39]  A. Putnis,et al.  Effect of secondary phase formation on the carbonation of olivine. , 2010, Environmental science & technology.

[40]  A. Putnis,et al.  Replacement Processes in the Earth's Crust , 2010 .

[41]  C. Manning,et al.  Thermodynamic Model for Mineral Solubility in Aqueous Fluids: Theory, Calibration and Application to Model Fluid‐Flow Systems , 2010 .

[42]  A. Putnis,et al.  Fluid-induced processes: metasomatism and metamorphism , 2010 .

[43]  A. Putnis Mineral Replacement Reactions , 2009 .

[44]  Peter B. Kelemen,et al.  In situ carbonation of peridotite for CO2 storage , 2008, Proceedings of the National Academy of Sciences.

[45]  Anders Malthe-Sørenssen,et al.  Reaction-assisted hierarchical fracturing during serpentinization , 2008 .

[46]  M. Velbel,et al.  Etch pits on naturally altered olivine from dunites of the Appalachian Blue Ridge Mountains, North Carolina, USA , 2008, Mineralogical Magazine.

[47]  A. Putnis,et al.  The mechanism of reequilibration of solids in the presence of a fluid phase , 2007 .

[48]  J. Mavrogenes,et al.  Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions , 2007 .

[49]  Catherine Mével,et al.  Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites , 2007 .

[50]  S. Poli,et al.  The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa , 2006 .

[51]  J. Connolly,et al.  Modeling open system metamorphic decarbonation of subducting slabs , 2006 .

[52]  J. Mavrogenes,et al.  A cold-sealing capsule design for synthesis of fluid inclusions and other hydrothermal experiments in a piston-cylinder apparatus , 2006 .

[53]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[54]  J. Ague,et al.  Fluid–metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas , 2004 .

[55]  C. Manning,et al.  The solubility of calcite in water at 6–16 kbar and 500–800 °C , 2003 .

[56]  Robert J. Stern,et al.  SUBDUCTION ZONES , 2002 .

[57]  J. Connolly,et al.  Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling , 2001 .

[58]  J. Connolly,et al.  Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle , 2001, Nature.

[59]  C. Manning,et al.  Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900°C , 2000 .

[60]  J. Molina,et al.  Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O–CO2-bearing basalts , 2000 .

[61]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[62]  J. Connolly,et al.  C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites , 1993 .

[63]  I. Chou,et al.  Speciation in experimental C-O-H fluids produced by the thermal dissociation of oxalic acid dihydrate☆ , 1992 .

[64]  J. Fredrich,et al.  Micromechanics of thermally induced cracking in three crustal rocks , 1986 .

[65]  D. Kerrick Review of metamorphic mixed-volatile (H2O-CO2) equilibria , 1974 .

[66]  W. Johannes An experimental investigation of the system MgO-SiO 2 -H 2 O-CO 2 , 1969 .