A review of magnetostrictive iron–gallium alloys

A unique combination of low hysteresis, moderate magnetostriction at low magnetic fields, good tensile strength, machinability and recent progress in commercially viable methods of processing iron–gallium alloys make them well poised for actuator and sensing applications. This review starts with a brief historical note on the early developments of magnetostrictive materials and moves to the recent work on FeGa alloys and their useful properties. This is followed by sections addressing the challenges specific to the characterization and processing of FeGa alloys and the state of the art in modeling their actuation and sensing behavior.

[1]  H. Chiriac,et al.  Magnetic Properties of Electrodeposited FeGa/CoFeB Multilayered Films and Nanowire Arrays , 2008, IEEE Transactions on Magnetics.

[2]  Alison B. Flatau,et al.  Characterization and energy-based model of the magnetomechanical behavior of polycrystalline iron–gallium alloys , 2007 .

[3]  N. Srisukhumbowornchai,et al.  Crystallographic textures in rolled and annealed Fe-Ga and Fe-Al alloys , 2004 .

[4]  JinHyeong Yoo,et al.  Abnormal (110) Grain Growth and Magnetostriction in Recrystallized Galfenol With Dispersed Niobium Carbide , 2009, IEEE Transactions on Magnetics.

[5]  F. Falk LANDAU THEORY AND MARTENSITIC PHASE TRANSITIONS , 1982 .

[6]  Alison B. Flatau,et al.  Comprehensive three dimensional hysteretic magnetomechanical model and its validation with experimental ⟨110⟩ single-crystal iron-gallium behavior , 2008 .

[7]  M. Wun-Fogle,et al.  The Effect of Field Annealing on Highly Textured Polycrystalline Galfenol Strips , 2009, IEEE Transactions on Magnetics.

[8]  M. Dapino,et al.  State-Space Constitutive Model for Magnetization and Magnetostriction of Galfenol Alloys , 2008, IEEE Transactions on Magnetics.

[9]  T. Lograsso,et al.  Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X=Al and Ga) alloys , 2010 .

[10]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[12]  Zin-Hyoung Lee,et al.  Modeling of magnetostriction in grain aligned terfenol-D and preferred orientation change of terfenol-D dendrites , 2002 .

[13]  Alison B. Flatau,et al.  Energy-based quasi-static modeling of the actuation and sensing behavior of single-crystal iron-gallium alloys , 2008 .

[14]  R. M. Bozorth,et al.  ANOMALOUS THERMAL EXPANSION AND MAGNETOSTRICTION OF SINGLE-CRYSTAL DYSPROSIUM , 1965 .

[15]  D. Jiles,et al.  Theoretical Model of Temperature Dependence of Hysteresis Based on Mean Field Theory , 2010, IEEE Transactions on Magnetics.

[16]  S. Mathews,et al.  Fabrication and characterization of all-thin-film magnetoelectric sensors , 2009 .

[17]  David Jiles,et al.  The law of approach as a means of modelling the magnetomechanical effect , 1995 .

[18]  M. Wun-Fogle,et al.  Induced Magnetic Anisotropy in Stress-Annealed Galfenol Alloys , 2006, IEEE Transactions on Magnetics.

[19]  M. Wun-Fogle,et al.  The effect of magnetic field annealing on single crystal iron gallium alloy , 2008 .

[20]  David L. Atherton,et al.  CORRIGENDUM: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect , 1984 .

[21]  Generalized form of anhysteretic magnetization function for Jiles–Atherton theory of hysteresis , 2009 .

[22]  S. Guruswamy,et al.  Influence of ordering on the magnetostriction of Fe–27.5 at. % Ga alloys , 2002 .

[23]  J. Atulasimha,et al.  Experimental Actuation and Sensing Behavior of Single-crystal Iron-Gallium Alloys , 2008 .

[24]  T. Higuchi,et al.  Machining of iron–gallium alloy for microactuator , 2007 .

[25]  T. Lograsso,et al.  Magnetostriction and elasticity of body centered cubic Fe100−xBex alloys , 2004 .

[26]  T. Lograsso,et al.  Magnetism, elasticity, and magnetostriction of FeCoGa alloys , 2003 .

[27]  Alison B. Flatau,et al.  Magnetostriction and surface-energy-induced selective grain growth in rolled Galfenol doped with sulfur , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  Shuying Cao,et al.  Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress , 2008 .

[29]  A. Clark,et al.  Anomalous thermal expansion and magnetostriction of single crystal Tb .27 Dy .73 Fe 2 , 1977 .

[30]  William D. Armstrong,et al.  A directional magnetization potential based model of magnetoelastic hysteresis , 2002 .

[31]  Alison B. Flatau,et al.  Preliminary Galfenol vibratory gyro-sensor design , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[32]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[33]  Marilyn Wun-Fogle,et al.  Magnetoelasticity of Fe–Ga and Fe–Al alloys , 2001 .

[34]  Manfred Wuttig,et al.  Magnetic anisotropy of FeGa alloys , 2004 .

[35]  Toshiro Higuchi,et al.  Micro-magnetostrictive vibrator using iron–gallium alloy , 2008 .

[36]  David Jiles,et al.  Generalization of hysteresis modeling to anisotropic materials , 1997 .

[37]  Marcelo J. Dapino,et al.  Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol , 2010 .

[38]  E. Summers,et al.  Magnetostriction of binary and ternary Fe–Ga alloys , 2007 .

[39]  S. Na,et al.  Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X=B,C,Mn,Mo,Nb,NbC) alloys , 2008 .

[40]  Alison B. Flatau,et al.  Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19 , 2002 .

[41]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[42]  Marilyn Wun-Fogle,et al.  Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys , 2000 .

[43]  E. Summers,et al.  Stress annealing of Fe–Ga transduction alloys for operation under tension and compression , 2005 .

[44]  T. Lograsso,et al.  Magnetostriction of ternary Fe–Ga–X alloys (X=Ni,Mo,Sn,Al) , 2002 .

[45]  William D. Armstrong,et al.  Magnetization and magnetostriction processes in Tb(0.27−0.30)Dy(0.73−0.70)Fe(1.9−2.0) , 1997 .

[46]  H. Chiriac,et al.  Electrochemical deposition of FeGa/NiFe magnetic multilayered films and nanowire arrays , 2008 .

[47]  T. Lograsso,et al.  Fabrication and characterization of Fe81Ga19 thin films , 2002 .

[48]  R. V. Dover,et al.  Combinatorial investigation of magnetostriction in Fe–Ga and Fe–Ga–Al , 2008 .

[49]  A. Bergqvist,et al.  A stress-dependent magnetic Preisach hysteresis model , 1991 .

[50]  D. Jiles,et al.  Theory of ferromagnetic hysteresis (invited) , 1984 .

[51]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .

[52]  Alison B. Flatau,et al.  Magnetic nanowires for acoustic sensors (invited) , 2006 .

[53]  William D. Armstrong,et al.  An incremental theory of magneto-elastic hysteresis in pseudo-cubic ferro-magnetostrictive alloys , 2003 .

[54]  Two-DOF Micro Magnetostrictive Bending Actuator for Wobbling Motion , 2008, IEEE Transactions on Magnetics.

[55]  T. Lograsso,et al.  Tensile properties of magnetostrictive iron–gallium alloys , 2004 .

[56]  Marilyn Wun-Fogle,et al.  Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys , 2003 .

[57]  S. Charap,et al.  Physics of magnetism , 1964 .

[58]  B. Das,et al.  Structure of melt-spun Fe-Ga based magnetostrictive alloys , 2002 .

[59]  T. Lograsso,et al.  Effect of thermal history and gallium content on magneto-mechanical properties of iron gallium alloys , 2006 .

[60]  William D. Armstrong Fully three-dimensional incremental model of magneto-elastic hysteresis in Terfenol-D , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[61]  W. Oates Multiscale Constitutive Model Development and Finite Element Implementation for Magnetostrictive Materials , 2007 .

[62]  David Jiles,et al.  Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .

[63]  T. Higuchi,et al.  Miniature spherical motor using iron–gallium alloy (Galfenol) , 2009 .

[64]  A. Clark,et al.  Magnetostrictton of terfenol-d beat treated under compressive stress , 1999, IEEE International Magnetics Conference.

[65]  T. V. Jayaraman,et al.  Corrosion studies of single crystals of iron–gallium alloys in aqueous environments , 2007 .

[66]  E. Summers,et al.  Magnetostriction and texture relationships in annealed galfenol alloys , 2009 .

[67]  Alison B. Flatau,et al.  Characterization of energy harvesting potential of Terfenol-D and Galfenol , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[68]  Toshiro Higuchi,et al.  “Zero-power” positioning actuator for cryogenic environments by combining magnetostrictive bimetal and HTS , 2007 .

[69]  M. Wun-Fogle,et al.  Induced magnetic anisotropy in stress-annealed Galfenol laminated rods , 2009 .

[70]  Supratik Datta,et al.  A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor , 2008 .

[71]  E. Summers,et al.  Galfenol alloying additions and the effects on uniaxial anisotropy generation , 2009 .

[72]  William D. Armstrong,et al.  The non-linear deformation of magnetically dilute magnetostrictive particulate composites , 2000 .

[73]  Supratik Datta,et al.  Stress and magnetic field dependent Young's modulus in single crystal iron-gallium alloys , 2010 .

[74]  D. Jiles Theory of the magnetomechanical effect , 1995 .

[75]  M. Wun-Fogle,et al.  Magnetostriction of Stress-annealed Fe-Ga and Fe-Ga-Al Alloys under Compressive and Tensile Stress , 2006 .

[76]  Supratik Datta,et al.  Anisotropy of constrained magnetostrictive materials , 2010 .

[77]  Thomas A. Lograsso,et al.  Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction , 2006 .

[78]  A. Flatau,et al.  The modeling of magnetomechanical sensors in laminated structures , 2008 .

[79]  Marcelo J. Dapino,et al.  Efficient model for field-induced magnetization and magnetostriction of Galfenol , 2009 .

[80]  David Jiles,et al.  A new approach to modeling the magnetomechanical effect , 2004 .

[81]  A. Bergqvist,et al.  A simple vector generalization of the Jiles-Atherton model of hysteresis , 1996 .

[82]  T. Lograsso,et al.  Fabrication and characterization of Fe/sub 81/Ga/sub 19/ thin films , 2002 .

[83]  Supratik Datta,et al.  Figures of merit of magnetostrictive single crystal iron–gallium alloys for actuator and sensor applications , 2009 .

[84]  R. Kellogg,et al.  Development and modeling of iron-gallium alloys , 2003 .

[85]  Supratik Datta,et al.  Modeling of Magnetomechanical Actuators in Laminated Structures , 2009 .

[86]  Kathleen Hale,et al.  Galfenol tactile sensor array and visual mapping system , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[87]  J. Atulasimha,et al.  Analysis of the effect of gallium content on the magnetomechanical behavior of single-crystal FeGa alloys using an energy-based model , 2008 .