Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes
暂无分享,去创建一个
Bruno Després | Emmanuel Franck | Christophe Buet | Thomas Leroy | E. Franck | B. Després | T. Leroy | C. Buet
[1] Pierre Charrier,et al. An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..
[2] François Golse,et al. The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .
[3] OIS GOLSEy,et al. THE CONVERGENCE OF NUMERICAL TRANSFER SCHEMES IN DIFFUSIVE REGIMES I: DISCRETE-ORDINATE METHOD FRANC , 2007 .
[4] I. Bihari. A generalization of a lemma of bellman and its application to uniqueness problems of differential equations , 1956 .
[5] Francis Filbet,et al. Analysis of an Asymptotic Preserving Scheme for Relaxation Systems , 2011 .
[6] E. Franck,et al. An asymptotic preserving scheme with the maximum principle for the model on distorded meshes , 2012 .
[7] Lorenzo Pareschi,et al. Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .
[8] Philippe G. LeFloch,et al. Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..
[9] Shi Jin,et al. The discrete-ordinate method in diffusive regimes , 1991 .
[10] E. Franck,et al. Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes , 2011 .
[11] Laurent Gosse,et al. Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Case's elementary solutions , 2011 .
[12] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[13] Bruno Després. Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension , 2010 .
[14] Laurent Gosse,et al. A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws , 2014, SIAM J. Numer. Anal..
[15] Nicolas Crouseilles,et al. A dynamic multi-scale model for transient radiative transfer calculations , 2013 .
[16] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[17] Lorenzo Pareschi,et al. Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..
[18] Laurent Gosse,et al. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .
[19] Luc Mieussens,et al. Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..
[20] G. Toscani,et al. Diiusive Relaxation Schemes for Discrete-velocity Kinetic Equations , 2007 .
[21] Thierry Gallouët,et al. Finite volume method , 2010, Scholarpedia.
[22] Shi Jin,et al. Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..
[23] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[24] Christophe Berthon,et al. Asymptotic preserving HLL schemes , 2011 .
[25] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[26] S. Mancini,et al. DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES , 2002 .
[27] C. D. Levermore,et al. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .
[28] Bruno Després,et al. Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.
[29] Bruno Després,et al. Lax theorem and finite volume schemes , 2003, Math. Comput..
[30] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.