Verification of the light phase effect at the facet on DFB laser properties

The critical importance of the relative position of the reflectors and grating in InP/InGaAsP DFB laser diodes have been directly verified. The relative position was varied by etching the cleaved facet of a DFB laser with the precisely controlled ion beam etching technique. The threshold current, oscillation wavelength, stopband width, and spectral intensity ratio of both modes which form a stopband were measured. All these characteristics changed periodically, with the period being about 2400 A. This value corresponds to one half of the oscillation wavelength in the laser cavity. These characteristic variations resulting from the relative position change of the reflector and grating are theoretically analyzed by the eigenvalue equation which determines the propagation modes. The calculated results qualitatively agree with the experimental findings.

[1]  Ikuo Mito,et al.  Highly efficient single-longitudinal-mode operation of antireflection-coated 1.3 μm DFB-DC-PBH LD , 1984 .

[2]  N. A. Olsson,et al.  High‐speed direct single‐frequency modulation with large tuning rate and frequency excursion in cleaved‐coupled‐cavity semiconductor lasers , 1983 .

[3]  Donald R. Scifres,et al.  Effect of external reflectors on longitudinal modes of distributed feedback lasers , 1975 .

[4]  J. Kinoshita,et al.  Room-temperature CW operation of 1.3 μm distributed-feedback GaInAsP/InP lasers , 1982 .

[5]  S. Akiba,et al.  Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 µm range , 1983 .

[6]  Yuichi Matsushima,et al.  Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm , 1981 .

[7]  M. Asada,et al.  The temperature dependence of the threshold current of GaInAsP/InP DH lasers , 1981, IEEE Journal of Quantum Electronics.

[8]  D. J. Malyon,et al.  102 km unrepeatered monomode fibre system experiment at 140 Mbit/s with an injection locked 1.52 μm laser transmitter , 1982 .

[9]  K. Nawata,et al.  Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser , 1977 .

[10]  Yoshio Noguchi,et al.  CW operation of DFB-BH GaInAsP/InP lasers in 1.5 μm wavelength region , 1982 .

[11]  R. S. Vodhanel,et al.  1 Gbit/s transmission experiment over 101 km of single-mode fibre using a 1.55 μm ridge guide C3 laser , 1983 .

[12]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[13]  Fumio Koyama,et al.  Room-temperature CW operation of 1.60 μm GaInAsP/InP buried-heterostructure integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide , 1982 .

[14]  A. W. Nelson,et al.  Monolithic 1.5 μm hybrid DFB/DBR lasers with 5 nm tuning range , 1984 .

[15]  Y. Suzuki,et al.  New 1.5 μm wavelength GaInAsp/InP distributed feedback laser , 1982 .

[16]  Richard A. Linke,et al.  130 KM TRANSMISSION EXPERIMENT AT 2 GB/S USING SILICA-CORE FIBER AND A VAPOR PHASE TRANSPORTED DFB LASER. , 1984 .

[17]  Amnon Yariv,et al.  cw operation of distributed‐feedback GaAs‐GaAlAs diode lasers at temperatures up to 300 K , 1975 .

[18]  I. Mito,et al.  Lasing mode and spectral linewidth control by phase tunable distributed feedback laser diodes with double channel planar buried heterostructure (DFB-DC-PBH LD's) , 1985, IEEE Journal of Quantum Electronics.

[19]  H. Nagai,et al.  High-power SLM operation of 1.3 μm InP/InGaAsP DFB LD with doubly buried heterostructure on p-type InP substrate , 1984 .