Improving the generative performance of chemical autoencoders through transfer learning

[1]  Hao Chi,et al.  MS/MS Spectrum Prediction for Modified Peptides Using pDeep2 Trained by Transfer Learning. , 2019, Analytical chemistry.

[2]  Kipton Barros,et al.  Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning , 2019, Nature Communications.

[3]  Yue Liu,et al.  Materials discovery and design using machine learning , 2017 .

[4]  Sergey Nikolenko,et al.  druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. , 2017, Molecular pharmaceutics.

[5]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[6]  Colin A. Grambow,et al.  Accurate Thermochemistry with Small Data Sets: A Bond Additivity Correction and Transfer Learning Approach. , 2019, The journal of physical chemistry. A.

[7]  Taghi M. Khoshgoftaar,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[8]  Mikkel N. Schmidt,et al.  Machine learning-based screening of complex molecules for polymer solar cells. , 2018, The Journal of chemical physics.

[9]  Petra Schneider,et al.  Generative Recurrent Networks for De Novo Drug Design , 2017, Molecular informatics.

[10]  Alán Aspuru-Guzik,et al.  Autonomous Molecular Design: Then and Now. , 2019, ACS applied materials & interfaces.

[11]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[12]  Stefan Grimme,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of Chemical Theory and Computation.

[13]  Rafael Gómez-Bombarelli,et al.  Generative Models for Automatic Chemical Design , 2019, Machine Learning Meets Quantum Physics.

[14]  Frank Noé,et al.  Learning Continuous and Data-Driven Molecular Descriptors by Translating Equivalent Chemical Representations , 2018 .

[15]  Alán Aspuru-Guzik,et al.  Inverse Design of Solid-State Materials via a Continuous Representation , 2019, Matter.

[16]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[17]  Thomas Blaschke,et al.  Exploring the GDB-13 chemical space using deep generative models , 2018, Journal of Cheminformatics.

[18]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[19]  Dmitry Vetrov,et al.  Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. , 2018, Molecular pharmaceutics.

[20]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[21]  Ryan-Rhys Griffiths,et al.  Constrained Bayesian optimization for automatic chemical design using variational autoencoders , 2019, Chemical science.

[22]  Nicolae C. Iovanac,et al.  Improved Chemical Prediction from Scarce Data Sets via Latent Space Enrichment. , 2019, The journal of physical chemistry. A.

[23]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[24]  Ole Winther,et al.  Deep Generative Models for Molecular Science , 2018, Molecular informatics.

[25]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[26]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[27]  Vijay S. Pande,et al.  Transfer Learning from Markov Models Leads to Efficient Sampling of Related Systems. , 2017, The journal of physical chemistry. B.

[28]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[29]  Heather J Kulik,et al.  Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. , 2018, The journal of physical chemistry letters.

[30]  Nicolae C. Iovanac,et al.  Simpler is Better: How Linear Prediction Tasks Improve Transfer Learning in Chemical Autoencoders. , 2020, The journal of physical chemistry. A.

[31]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.