Observation of room temperature optical absorption in InP/GaAs type-II ultrathin quantum wells and quantum dots

Room temperature optical absorption process is observed in ultrathin quantum wells (QWs) and quantum dots (QDs) of InP/GaAs type-II band alignment system using surface photovoltage spectroscopy technique, where no measurable photoluminescence signal is available. Clear signature of absorption edge in the sub band gap region of GaAs barrier layer is observed for the ultrathin QWs and QDs, which red shifts with the amount of deposited InP material. Movement of photogenerated holes towards the sample surface is proposed to be the main mechanism for the generation of surface photovoltage in type-II ultrathin QWs and QDs. QDs of smaller size are found to be free from the dislocations as confirmed by the high resolution transmission electron microscopy images.

[1]  J. Misiewicz,et al.  Temperature dependent surface photovoltage spectra of type I GaAs1−xSbx/GaAs multiple quantum well structures , 2013 .

[2]  S. M. Oak,et al.  Signature of optical absorption in highly strained and partially relaxed InP/GaAs type-II quantum well superlattice structures , 2012 .

[3]  S. M. Oak,et al.  Elastic-relaxation-induced barrier layer thickness undulations in InP/GaAs type-II quantum well superlattice structures , 2012 .

[4]  S. M. Oak,et al.  Effect of built-in electric field on the temperature dependence of transition energy for InP/GaAs type-II superlattices , 2011 .

[5]  T. Ivanov,et al.  Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy , 2011 .

[6]  S. M. Oak,et al.  Conduction band offset and quantum states probed by capacitance–voltage measurements for InP/GaAs type-II ultrathin quantum wells , 2011 .

[7]  M. M. de Lima,et al.  Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts , 2011, Nanotechnology.

[8]  S. M. Oak,et al.  Temperature dependence of the photoluminescence from InP/GaAs type-II ultrathin quantum wells , 2010 .

[9]  S. M. Oak,et al.  Observation of electron confinement in InP/GaAs type-II ultrathin quantum wells , 2010 .

[10]  G. O. Dias,et al.  Optical emission and its decay time of type-II InP/GaAs quantum dots , 2010 .

[11]  V. Moshchalkov,et al.  Extended excitons and compact heliumlike biexcitons in type-II quantum dots. , 2009, 0910.4290.

[12]  S. M. Oak,et al.  Compositional dependence of the bowing parameter for highly strained InGaAs/GaAs quantum wells , 2009 .

[13]  H. Hsu,et al.  Surface photovoltage and photoluminescence excitation spectroscopy of stacked self-assembled InAs quantum dots with InGaAs overgrown layers , 2008 .

[14]  B. Alén,et al.  Optical investigation of type II GaSb/GaAs self-assembled quantum dots , 2007 .

[15]  S. M. Oak,et al.  Impact of growth parameters on the structural properties of InP/GaAs type-II quantum dots grown by metal-organic vapour phase epitaxy , 2007, 2007 International Workshop on Physics of Semiconductor Devices.

[16]  C. Lee,et al.  Characterization of excitonic features in self-assembled InAs/GaAs quantum dot superlattice structures via surface photovoltage spectroscopy , 2007 .

[17]  R. Magalhães-Paniago,et al.  Structural and optical properties of InP quantum dots grown on GaAs(001) , 2007 .

[18]  A. Nath,et al.  Spectroscopic investigations of MOVPE-grown InGaAs/GaAs quantum wells with low and high built-in strain , 2007 .

[19]  K. Rustagi,et al.  Temperature dependence of the lowest excitonic transition for an InAs ultrathin quantum well , 2006 .

[20]  K. H. Lee,et al.  Type-II interband transition of ZnS0.78Te0.22/ZnTe single quantum wells , 2004 .

[21]  G. Medeiros-Ribeiro,et al.  Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles. , 2003, Physical review letters.

[22]  Sunil Kumar,et al.  Surface photovoltage spectroscopy of semi-insulating GaAs in the 800–1100 nm range , 2001 .

[23]  S. Chua,et al.  Growth and optical properties of type-II InP/GaAs self-organized quantum dots , 2001 .

[24]  B. Arora,et al.  Electroreflectance and surface photovoltage spectroscopies of semiconductor structures using an indium-tin-oxide-coated glass electrode in soft contact mode , 2001 .

[25]  Shailendra Kumar,et al.  Bound exciton effect and carrier escape mechanisms in temperature-dependent surface photovoltage spectroscopy of a single quantum well , 2000 .

[26]  C. Thomsen,et al.  High-gain excitonic lasing from a single InAs monolayer in bulk GaAs , 1998 .

[27]  V. A. Karasyuk,et al.  ORIGIN OF SHARP LINES IN PHOTOLUMINESCENCE EMISSION FROM SUBMONOLAYERS OF INAS IN GAAS , 1997 .

[28]  Milton Feng,et al.  p‐type InGaAs/InP quantum well infrared photodetector with peak response at 4.55 μm , 1996 .

[29]  Sauer,et al.  Type-II band alignment in Si/Si1-xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory. , 1994, Physical review. B, Condensed matter.

[30]  Graham,et al.  Optical and structural properties of metalorganic-vapor-phase-epitaxy-grown InAs quantum wells and quantum dots in InP. , 1993, Physical review. B, Condensed matter.

[31]  Brandt,et al.  Exciton localization in submonolayer InAs/GaAs multiple quantum wells. , 1990, Physical review. B, Condensed matter.

[32]  N. Mason,et al.  GaAs/GaSb strained‐layer heterostructures deposited by metalorganic vapor phase epitaxy , 1989 .

[33]  Cardona,et al.  Temperature dependence of the interband critical-point parameters of InP. , 1987, Physical review. B, Condensed matter.