High Performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding

Understanding the origin of the high capacity displayed by Li2MnO3–LiMO2 (M = Ni, Co) composites is essential for improving their cycling and rate capability performances. To address this issue, the Li2Ru1–yMnyO3 series between the iso-structural layered end-members Li2MnO3 and Li2RuO3 was investigated. A complete solid solution was found, with the 0.4 ≤ y ≤ 0.6 members showing sustainable reversible capacities exceeding 220 mAh·g–1 centered around 3.6 V vs Li+/Li. The voltage–composition profiles display a plateau on the first charge as compared to an S-type curve on subsequent discharge which is maintained on the following charges/discharges, with therefore a lowering of the average voltage. We show this profile to evolve upon long cycling due to a structural phase transition as deduced from XRD measurements. Finally we demonstrate, via XPS measurements, the oxidation and reduction of ruthenium (Ru5+/Ru4+) during cycling together with a partial activity of the Mn4+/Mn3+ redox couple. Moreover, we provid...

[1]  Christopher S. Johnson,et al.  Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .

[2]  Paulo J. Ferreira,et al.  Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution , 2011 .

[3]  Jingsi Yang,et al.  Synthesis, Electrochemistry, and Structural Studies of Lithium Intercalation of a Nanocrystalline Li2MnO3-like Compound , 2005 .

[4]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .

[5]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[6]  J. Dahn,et al.  Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1) , 2003 .

[7]  Y. S. Lee,et al.  Powder property and electrochemical characterization of Li2MnO3 material , 2007 .

[8]  C. Delmas,et al.  Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure , 2012 .

[9]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[10]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[11]  M. Whittingham,et al.  Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 , 2007 .

[12]  J. Rouxel Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems , 1996 .

[13]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[14]  J. Dahn,et al.  Layered Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries , 2001 .

[15]  H. Kanoh,et al.  Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions , 2000 .

[16]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[17]  Liquan Chen,et al.  Density Functional Investigation on Li2MnO3 , 2012 .

[18]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[19]  J. Ehrhardt,et al.  XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings , 2007 .

[20]  A. Marcelli,et al.  L2,3 XANES of the High Tc Superconductor YBa2Cu3O~7 with Variable Oxygen Content , 1987 .

[21]  P. Bruce,et al.  Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .

[22]  A. Bianconi,et al.  Localization of Cu 3d levels in the high Tc superconductor YBa2Cu3O∼7 by Cu 2p X-ray photoelectron spectroscopy , 1987 .

[23]  C. Delmas,et al.  Structure of Li2MnO3 with different degrees of defects , 2010 .

[24]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[25]  Selwyn,et al.  Local environment of Li intercalated in Mo6SezS8-z as probed using electrochemical methods. , 1986, Physical review. B, Condensed matter.

[26]  Young Joo Lee,et al.  6Li MAS NMR Studies of the Local Structure and Electrochemical Properties of Cr-doped Lithium Manganese and Lithium Cobalt Oxide Cathode Materials for Lithium-Ion Batteries , 2002 .

[27]  J. Dahn,et al.  Structure and Electrochemistry of Layered Li [ Cr x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2 , 2002 .

[28]  H. Sakaebe,et al.  Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li , 2011 .

[29]  M. Thackeray,et al.  Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .

[30]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[31]  Jianming Zheng,et al.  Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. , 2012, ACS nano.

[32]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[33]  K. Kang,et al.  Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries , 2012 .

[34]  John T. Vaughey,et al.  Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries☆ , 2006 .

[35]  M. Takano,et al.  Structure and lithium deintercalation of Li2−xRuO3 , 1995 .

[36]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[37]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[38]  J. Goodenough,et al.  Structure and bonding in lithium ruthenate, Li2RuO3 , 1988 .

[39]  Ru‐Shi Liu,et al.  Local Structure and First Cycle Redox Mechanism of Layered Li 1.2 Cr 0.4 Mn 0.4 O 2 Cathode Material , 2002 .

[40]  J. Rouxel The Importance of Anions in Redox-Type Chimie Douce , 1998 .

[41]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[42]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[44]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[45]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[46]  P. Strobel,et al.  Crystallographic and magnetic structure of Li2MnO3 , 1988 .

[47]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[48]  Marc Doyle,et al.  A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling , 1994 .

[49]  G. Zou,et al.  X-Ray photoelectron and infrared transmission spectra of manganite system La0.5-xBixCa0.5MnO3 (0 <= x <= 0.25) , 2003 .

[50]  A. Manthiram,et al.  Effect of surface modifications on the layered solid solution cathodes (1 − z) Li[Li1/3Mn2/3]O2 − (z) Li[Mn0.5 − yNi0.5 − yCo2y]O2 , 2009 .

[51]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[52]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[53]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[54]  A. Manthiram,et al.  Factors influencing the irreversible oxygen loss and reversible capacity in layered Li [Li1/3Mn2/3]O2-Li [M]O2 (M = Mn0.5- yNi0.5- yCo2y and Ni1- yCoy) solid solutions , 2007 .

[55]  R. Dedryvère,et al.  Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .

[56]  M. Morcrette,et al.  Redox-Induced Structural Change in Anode Materials Based on Tetrahedral (MPn4)x- Transition Metal Pnictides , 2004 .