An image processing approach to surface matching

Establishing a correspondence between two surfaces is a basic ingredient in many geometry processing applications. Existing approaches, which attempt to match two meshes directly in 3D, can be cumbersome to implement and it is often hard to produce accurate results in a reasonable amount of time. In this paper, we present a new variational method for matching surfaces that addresses these issues. Instead of matching two surfaces directly in 3D, we apply well-established matching methods from image processing in the parameter domains of the surfaces. A matching energy is introduced that can depend on curvature, feature demarcations or surface textures, and a regularization energy controls length and area changes in the induced non-rigid deformation between the two surfaces. The metric on both surfaces is properly incorporated into the formulation of the energy. This approach reduces all computations to the 2D setting while accounting for the original geometries. Consequently a fast multiresolution numerical algorithm for regular image grids can be used to solve the global optimization problem. The final algorithm is robust, generically much simpler than direct matching methods, and very fast for highly resolved triangle meshes.

[1]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[2]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[3]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[4]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[5]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[6]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[9]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[10]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[11]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[12]  I. Cohen Nonlinear Variational Method for Optical Flow Computation , 2006 .

[13]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[14]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[15]  Isabelle Herlin,et al.  Matching Structures by Computing Minimal Paths on a Manifold , 2002, J. Vis. Commun. Image Represent..

[16]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[17]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[18]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[19]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[20]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[21]  Martin Rumpf,et al.  A Variational Approach to Nonrigid Morphological Image Registration , 2004, SIAM J. Appl. Math..

[22]  Matthew Turk,et al.  A Morphable Model For The Synthesis Of 3D Faces , 1999, SIGGRAPH.

[23]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[24]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[25]  Li Zhang,et al.  Spacetime faces: high resolution capture for modeling and animation , 2004, SIGGRAPH 2004.

[26]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[27]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[28]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[29]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[30]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[31]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[32]  Martin Rumpf,et al.  Axioms and variational problems in surface parameterization , 2004, Comput. Aided Geom. Des..

[33]  Xianfeng Gu,et al.  Matching 3D Shapes Using 2D Conformal Representations , 2004, MICCAI.

[34]  John M. Schreiner,et al.  Inter-surface mapping , 2004, SIGGRAPH 2004.

[35]  Joachim Weickert,et al.  A Scale-Space Approach to Nonlocal Optical Flow Calculations , 1999, Scale-Space.

[36]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[37]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[38]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[39]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.