Performance investigation of antimony chalcogenide based thin film solar cells via SCAPS simulation

[1]  A. Khadir Performance investigation of Sb2S3 and Sb2Se3 earth abundant based thin film solar cells , 2022, Optical Materials.

[2]  B. Mercimek,et al.  Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs , 2021, Optical Materials.

[3]  Yiwei Yin,et al.  Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics , 2021, Nature Communications.

[4]  M. Green,et al.  Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency , 2020, Nature Energy.

[5]  Zhaowen Chen,et al.  The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation , 2020 .

[6]  A. Pal,et al.  Sulfur-Vacancy Passivation in Solution-Processed Sb2S3 Thin Films: Influence on Photovoltaic Interfaces , 2020 .

[7]  Rui Shan,et al.  Optimization bandgap gradation structure simulation of Cu2Sn1−xGexS3 solar cells by SCAPS , 2019 .

[8]  Jin Zhao,et al.  Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices , 2019, Nature Communications.

[9]  Yun Sun,et al.  Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells , 2019, Journal of Energy Chemistry.

[10]  Dong Hoe Kim,et al.  Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS , 2019, Joule.

[11]  Pawan Singh,et al.  Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review , 2019, Solar Energy Materials and Solar Cells.

[12]  Yun Sun,et al.  Substrate structured Sb2S3 thin film solar cells fabricated by rapid thermal evaporation method , 2019, Solar Energy.

[13]  Jiang Tang,et al.  Alternative back contacts for Sb2Se3 solar cells , 2019, Solar Energy.

[14]  Thomas Kirchartz,et al.  Solar Energy Conversion and the Shockley-Queisser Model, a Guide for the Perplexed , 2019, 1903.11954.

[15]  C. Ballif,et al.  25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p-type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts , 2019, ACS Energy Letters.

[16]  Xiuling Li,et al.  Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S,Se)4 solar cells , 2018, Solar Energy Materials and Solar Cells.

[17]  Jiang Tang,et al.  Sb2S3 Solar Cells , 2018 .

[18]  Vincent M. Le Corre,et al.  Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells , 2018, ACS applied materials & interfaces.

[19]  Jay B. Patel,et al.  Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. , 2018, The journal of physical chemistry letters.

[20]  Jiang Tang,et al.  Postsurface Selenization for High Performance Sb2S3 Planar Thin Film Solar Cells , 2017 .

[21]  Tao Chen,et al.  Development of antimony sulfide-selenide Sb 2 (S, Se) 3 -based solar cells , 2017 .

[22]  Jiang Tang,et al.  Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. , 2014, ACS applied materials & interfaces.

[23]  I. M. Dharmadasa,et al.  Fermi level pinning and effects on CuInGaSe2-based thin-film solar cells , 2009 .