Weighted Coloring on Planar, Bipartite and Split Graphs: Complexity and Improved Approximation
暂无分享,去创建一个
[1] A. Bonato,et al. Graphs and Hypergraphs , 2022 .
[2] Zsolt Tuza,et al. Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.
[3] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .
[4] Vangelis Th. Paschos,et al. Weighted Node Coloring: When Stable Sets Are Expensive , 2002, WG.
[5] Xuding Zhu,et al. A Coloring Problem for Weighted Graphs , 1997, Inf. Process. Lett..
[6] Refael Hassin,et al. The maximum saving partition problem , 2005, Oper. Res. Lett..
[7] Z. Tuza,et al. PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .
[8] J. K. Il. Precoloring Extension with Fixed Color Bound , 1994 .
[9] Dániel Marx,et al. NP‐completeness of list coloring and precoloring extension on the edges of planar graphs , 2005, J. Graph Theory.
[10] Zsolt Tuza,et al. The maximum number of edges in 2K2-free graphs of bounded degree , 1990, Discret. Math..
[11] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[12] Vladimir Gurvich,et al. Difference graphs , 2004, Discret. Math..
[13] Klaus Jansen,et al. Scheduling with Incompatible Jobs , 1992, Discret. Appl. Math..
[14] David Lichtenstein,et al. Planar Formulae and Their Uses , 1982, SIAM J. Comput..