InFrame: Multiflexing Full-Frame Visible Communication Channel for Humans and Devices

Recent efforts in visible light communication over screen-camera links have exploited the display for data communications. Such practices, albeit convenient, have led to contention between space allocated for users and content reserved for devices, in addition to their aesthetic issues and distractive nature. In this paper, we propose InFrame--a system that enables dual-mode full-frame communication for both humans and devices simultaneously. InFrame leverages the temporal flick-fusion property of human vision system and the fast frame rate of modern display. It multiplexes data onto full-frame video contents through a novel complementary frame design and several other techniques. It thus ensures screen-camera data communication without affecting the primary video-viewing experience for human users. Our preliminary experiments have confirmed that InFrame can achieve about 12.8kbps data rate with imperceptible video artifacts when being played back at 120FPS.

[1]  Toby Sharp,et al.  An Implementation of Key-Based Digital Signal Steganography , 2001, Information Hiding.

[2]  Wenjun Hu,et al.  LightSync: unsynchronized visual communication over screen-camera links , 2013, MobiCom.

[3]  M. Hwang,et al.  Image steganographic scheme based on pixel-value differencing and LSB replacement methods , 2005 .

[4]  Jessica J. Fridrich,et al.  Digital image steganography using stochastic modulation , 2003, IS&T/SPIE Electronic Imaging.

[5]  V. Ramachandran,et al.  Segmentation Analysis for Effective Usage of Network Resources in Video Streaming , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[6]  I. M. L. C. Vogels,et al.  Effect of Eye Movements on Perception of Temporally Modulated Light , 2012 .

[7]  David A. Atchison,et al.  Optics of the Human Eye , 2023 .

[8]  D. G. Green,et al.  Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. , 1969, Vision research.

[9]  Wayne A. Hershberger,et al.  The Phantom Array: A Perisaccadic Illusion of Visual Direction , 1998 .

[10]  R. Kavitha,et al.  Lossless Steganography on AVI File Using Swapping Algorithm , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[11]  Chunming Hu,et al.  Enhancing reliability to boost the throughput over screen-camera links , 2014, MobiCom.

[12]  G S Brindley,et al.  The flicker fusion frequency of the blue‐sensitive mechanism of colour vision , 1966, The Journal of physiology.

[13]  A. Wilkins,et al.  Flicker can be perceived during saccades at frequencies in excess of 1 kHz , 2013 .

[14]  Dina Katabi,et al.  PixNet: interference-free wireless links using LCD-camera pairs , 2010, MobiCom.

[15]  E. Simonson,et al.  Flicker fusion frequency; background and applications. , 1952, Physiological reviews.

[16]  Markus G. Kuhn,et al.  Information hiding-a survey , 1999, Proc. IEEE.

[17]  J LEVINSON Fusion of Complex Flicker , 1959, Science.

[18]  Anthony Rowe,et al.  Visual light landmarks for mobile devices , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[19]  Guoliang Xing,et al.  COBRA: color barcode streaming for smartphone systems , 2012, MobiSys '12.

[20]  Ashwin Ashok,et al.  Dynamic and invisible messaging for visual MIMO , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[21]  O. Braddick Visual psychophysics , 1997, Current Biology.

[22]  Kevin Curran,et al.  Digital image steganography: Survey and analysis of current methods , 2010, Signal Process..

[23]  R. Balaji,et al.  Secure data transmission using video Steganography , 2011, 2011 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY.

[24]  Ching-Hsiang Chu,et al.  IVC: Imperceptible Video Communication , 2014 .

[25]  Yanqun Zhang,et al.  Digital Watermarking Technology: A Review , 2009, 2009 ETP International Conference on Future Computer and Communication.

[26]  Qiaoyan Wen,et al.  A steganographic method for digital images with four-pixel differencing and modified LSB substitution , 2011, J. Vis. Commun. Image Represent..

[27]  Jiwu Huang,et al.  A New Approach to Estimating Hidden Message Length in Stochastic Modulation Steganography , 2005, IWDW.

[28]  Ramesh Raskar,et al.  VRCodes: Unobtrusive and active visual codes for interaction by exploiting rolling shutter , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[29]  David A. Atchison,et al.  Chapter 20 – The aging eye , 2000 .

[30]  Tianxing Li,et al.  HiLight: Hiding Bits in Pixel Translucency Changes , 2015, MOCO.