Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024

[1]  A. Scaloni,et al.  Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor , 2015, Applied Microbiology and Biotechnology.

[2]  C. Peano,et al.  A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete , 2015, PloS one.

[3]  I. Holland,et al.  Phosphate Homeostasis in Conditions of Phosphate Proficiency and Limitation in the Wild Type and the phoP Mutant of Streptomyces lividans , 2015, PloS one.

[4]  W. Craig,et al.  In Vivo Pharmacokinetics and Pharmacodynamics of the Lantibiotic NAI-107 in a Neutropenic Murine Thigh Infection Model , 2014, Antimicrobial Agents and Chemotherapy.

[5]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[6]  R. Alduina,et al.  Inorganic phosphate is a trigger factor for Microbispora sp. ATCC-PTA-5024 growth and NAI-107 production , 2014, Microbial Cell Factories.

[7]  Jia Guo,et al.  Two Adjacent and Similar TetR Family Transcriptional Regulator Genes, SAV577 and SAV576, Co-Regulate Avermectin Production in Streptomyces avermitilis , 2014, PloS one.

[8]  Yinghua Lu,et al.  Direct proteomic mapping of Streptomyces roseosporus NRRL 11379 with precursor and insights into daptomycin biosynthesis. , 2014, Journal of bioscience and bioengineering.

[9]  H. Sahl,et al.  The Lantibiotic NAI-107 Binds to Bactoprenol-bound Cell Wall Precursors and Impairs Membrane Functions* , 2014, The Journal of Biological Chemistry.

[10]  L. Nielsen,et al.  Temporal Dynamics of the Saccharopolyspora erythraea Phosphoproteome* , 2014, Molecular & Cellular Proteomics.

[11]  Lian He,et al.  Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa , 2014, Microbial Cell Factories.

[12]  Henry H. N. Lam,et al.  Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. , 2014, Journal of proteome research.

[13]  T. Weber,et al.  Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107 , 2014, Genome Announcements.

[14]  S. Donadio,et al.  Characterization of the congeners in the lantibiotic NAI-107 complex. , 2014, Journal of natural products.

[15]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[16]  Jae Kyung Sohng,et al.  An Insight into the “-Omics” Based Engineering of Streptomycetes for Secondary Metabolite Overproduction , 2013, BioMed research international.

[17]  Gerard D. Wright,et al.  Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. , 2013, International journal of medical microbiology : IJMM.

[18]  B. Ye,et al.  Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. , 2013, Journal of proteomics.

[19]  Shifang Ren Moonlight chaperonade. Interview by Sophia Häfner. , 2013, Microbes and infection.

[20]  A. Scaloni,et al.  Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation , 2012, Microbial Cell Factories.

[21]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[22]  N. Tamura,et al.  Rhodococcus Prokaryotic Ubiquitin-Like Protein (Pup) Is Degraded by Deaminase of Pup (Dop) , 2012, Bioscience, biotechnology, and biochemistry.

[23]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[24]  W. Haskins,et al.  Association of Acinetobacter baumannii EF-Tu with Cell Surface, Outer Membrane Vesicles, and Fibronectin , 2012, TheScientificWorldJournal.

[25]  S. Dhandayuthapani,et al.  OsmC proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis protect against organic hydroperoxide stress. , 2011, Tuberculosis.

[26]  E. Nudler,et al.  H2S: A Universal Defense Against Antibiotics in Bacteria , 2011, Science.

[27]  Gilles P van Wezel,et al.  The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. , 2011, Natural product reports.

[28]  M. Bibb,et al.  Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope , 2011, BMC Genomics.

[29]  M. Bibb,et al.  Feed-Forward Regulation of Microbisporicin Biosynthesis in Microbispora corallina , 2011, Journal of bacteriology.

[30]  P. Horvatovich,et al.  Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance , 2011, BMC Microbiology.

[31]  Byung-Gee Kim,et al.  Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952 , 2011, Journal of Industrial Microbiology & Biotechnology.

[32]  R. H. Baltz Strain improvement in actinomycetes in the postgenomic era , 2011, Journal of Industrial Microbiology & Biotechnology.

[33]  S. Donadio,et al.  Efficacy of the New Lantibiotic NAI-107 in Experimental Infections Induced by Multidrug-Resistant Gram-Positive Pathogens , 2011, Antimicrobial Agents and Chemotherapy.

[34]  A. Scaloni,et al.  Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations , 2010, Microbial cell factories.

[35]  P. Alifano,et al.  Guanosine 5′‐diphosphate 3′‐diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a ‘rare’ actinomycete , 2010, Molecular microbiology.

[36]  M. Bibb,et al.  Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes , 2010, Proceedings of the National Academy of Sciences.

[37]  A. Scaloni,et al.  Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina , 2010, Proteomics.

[38]  Young-Gun Zo,et al.  Agreement, Precision, and Accuracy of Epifluorescence Microscopy Methods for Enumeration of Total Bacterial Numbers , 2010, Applied and Environmental Microbiology.

[39]  Kay Nieselt,et al.  The dynamic architecture of the metabolic switch in Streptomyces coelicolor , 2010, BMC Genomics.

[40]  T. Ross,et al.  Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. , 2008, Research in microbiology.

[41]  Seong-Cheol Park,et al.  Structural and functional characterization of osmotically inducible protein C (OsmC) from Thermococcus kodakaraensis KOD1. , 2008, Biochimica et biophysica acta.

[42]  J. Martínez,et al.  Antibiotics as signals that trigger specific bacterial responses. , 2008, Current opinion in microbiology.

[43]  F. Castiglione,et al.  Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. , 2008, Chemistry & biology.

[44]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes , 2017, Nucleic Acids Res..

[45]  Masasuke Yoshida,et al.  Escherichia coli phage‐shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes , 2007, Molecular microbiology.

[46]  M. Bibb,et al.  The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2) , 2007, Genome Biology.

[47]  W. Wohlleben,et al.  Nitrogen Metabolism in Streptomyces coelicolor: Transcriptional and Post-Translational Regulation , 2006, Journal of Molecular Microbiology and Biotechnology.

[48]  K. Jung,et al.  Time-Dependent Proteome Alterations under Osmotic Stress during Aerobic and Anaerobic Growth in Escherichia coli , 2006, Journal of bacteriology.

[49]  M. Shirtliff,et al.  Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility , 2006, Antimicrobial Agents and Chemotherapy.

[50]  A. Willems,et al.  Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor , 2006, Molecular microbiology.

[51]  T. Nyström,et al.  Differential Roles of the Universal Stress Proteins of Escherichia coli in Oxidative Stress Resistance, Adhesion, and Motility , 2005, Journal of bacteriology.

[52]  Raquel Tobes,et al.  The TetR Family of Transcriptional Repressors , 2005, Microbiology and Molecular Biology Reviews.

[53]  M. Bibb,et al.  Regulation of secondary metabolism in streptomycetes. , 2005, Current opinion in microbiology.

[54]  J. Martín,et al.  Phosphate Control of the Biosynthesis of Antibiotics and Other Secondary Metabolites Is Mediated by the PhoR-PhoP System: an Unfinished Story , 2004, Journal of bacteriology.

[55]  M. Hudson,et al.  The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Wahl,et al.  The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control. , 2003, RNA.

[57]  Jiri Vohradsky,et al.  Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress‐induced proteins and central metabolic enzymes , 2003, Molecular microbiology.

[58]  M. Bibb,et al.  Primary and secondary metabolism, and post‐translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor , 2002, Molecular microbiology.

[59]  C. Thompson,et al.  Role of Acid Metabolism in Streptomyces coelicolor Morphological Differentiation and Antibiotic Biosynthesis , 2001, Journal of bacteriology.

[60]  A. Spirin,et al.  Ribosome‐associated protein that inhibits translation at the aminoacyl‐tRNA binding stage , 2001, EMBO reports.

[61]  K. Ochi,et al.  An essential GTP‐binding protein functions as a regulator for differentiation in Streptomyces coelicolor , 1998, Molecular microbiology.

[62]  R. Losick,et al.  An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor , 1996, Molecular microbiology.

[63]  J. Ward,et al.  Organic acid excretion by Streptomyces lividans TK24 during growth on defined carbon and nitrogen sources. , 1996, Microbiology.

[64]  W. D. de Vos,et al.  Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction (*) , 1995, The Journal of Biological Chemistry.

[65]  R. Losick,et al.  Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. , 1993, Genes & development.

[66]  K. Makino,et al.  Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli , 1993, Journal of bacteriology.

[67]  M. McBride,et al.  Regulation of trehalose metabolism by Streptomyces griseus spores , 1990, Journal of bacteriology.

[68]  K. Maung-U,et al.  Determination of inorganic phosphate with molybdate and Triton X-100 without reduction. , 1985, Analytical biochemistry.

[69]  D. Linke,et al.  Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024. , 2016, Environmental microbiology.

[70]  P. G. Arnison,et al.  Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. , 2013, Natural product reports.

[71]  Y. Wen,et al.  Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis , 2013, Applied Microbiology and Biotechnology.

[72]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[73]  M. Karavolos,et al.  Role of the universal stress protein UspA of Salmonella in growth arrest, stress and virulence. , 2007, Microbial pathogenesis.

[74]  B. Rueda,et al.  Changes in glycogen and trehalose content of Streptomyces brasiliensis hyphae during growth in liquid cultures under sporulating and non-sporulating conditions. , 2001, FEMS microbiology letters.

[75]  T. Kieser Practical streptomyces genetics , 2000 .

[76]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[77]  F. Krug,et al.  Determination of ammonia in low concentrations with Nessler's reagent by flow injection analysis , 1979 .