Substructured Two-level and Multilevel Domain Decomposition Methods

Two-level domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, a new class of substructured two-level methods is introduced, for which both domain decomposition smoothers and coarse correction steps are defined on the interfaces. This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, it allows one to use some of the well-known efficient coarse spaces proposed in the literature. Moreover, our new substructured framework can be efficiently extended to a multi-level framework, which is always desirable when the high dimension or the scarce quality of the coarse space prevent the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

[1]  Benjamin Stamm,et al.  On the Scalability of the Parallel Schwarz Method in One-Dimension , 2019, Lecture Notes in Computational Science and Engineering.

[2]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[3]  Axel Klawonn,et al.  Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D , 2018 .

[4]  Martin J. Gander,et al.  Happy 25th Anniversary DDM! ... But How Fast Can the Schwarz Method Solve Your Logo? , 2020 .

[5]  O. Widlund,et al.  A family of energy minimizing coarse spaces for overlapping schwarz preconditioners , 2008 .

[6]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[7]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[8]  Martin J. Gander,et al.  On the Scalability of Classical One-Level Domain-Decomposition Methods , 2018, Vietnam Journal of Mathematics.

[10]  S. Volkwein,et al.  Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control , 2013 .

[11]  M. Gander,et al.  Complete, Optimal and Optimized Coarse Spaces for Additive Schwarz , 2017 .

[12]  Martin J. Gander On the influence of geometry on optimized Schwarz methods , 2011 .

[13]  Martin J. Gander,et al.  SHEM: An Optimal Coarse Space for RAS and Its Multiscale Approximation , 2017 .

[14]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[15]  Martin J. Gander,et al.  Optimized Schwarz Methods for Circular Domain Decompositions with Overlap , 2014, SIAM J. Numer. Anal..

[16]  T. Hou,et al.  Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios , 2002 .

[17]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[19]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[20]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[21]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[22]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[23]  M. Gander,et al.  Analysis of a New Harmonically Enriched Multiscale Coarse Space for Domain Decomposition Methods , 2015, 1512.05285.

[24]  Martin J. Gander,et al.  Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains: Part I , 2017, SIAM J. Numer. Anal..

[25]  Martin J. Gander,et al.  Multilevel Optimized Schwarz Methods , 2020, SIAM J. Sci. Comput..

[26]  Martin J. Gander,et al.  Does SHEM for Additive Schwarz Work Better than Predicted by Its Condition Number Estimate , 2017 .

[27]  Martin J. Gander,et al.  The Optimized Schwarz Method with a Coarse Grid Correction , 2012, SIAM J. Sci. Comput..

[28]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[29]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[30]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[31]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[32]  Muhammad Hassan,et al.  On the Scalability of the Schwarz Method , 2019, The SMAI journal of computational mathematics.

[33]  Martin J. Gander,et al.  A New Coarse Grid Correction for RAS/AS , 2014 .

[34]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[35]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[36]  M. Gander,et al.  New Coarse Corrections for Optimized Restricted Additive Schwarz Using PETSc , 2020 .

[37]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[38]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[39]  Julien Salomon,et al.  Methods of Reflections: relations with Schwarz methods and classical stationary iterations, scalability and preconditioning. , 2019 .

[40]  Martin J. Gander,et al.  Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III , 2018 .

[41]  M. Gander,et al.  On Optimal Coarse Spaces for Domain Decomposition and Their Approximation , 2017 .

[42]  Numérisation de documents anciens mathématiques,et al.  Mathematical modelling and numerical analysis : Modélisation mathématique et analyse numérique. , 1985 .

[44]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[45]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[46]  Stefano Zampini,et al.  Multilevel Balancing Domain Decomposition by Constraints Deluxe Algorithms with Adaptive Coarse Spaces for Flow in Porous Media , 2017, SIAM J. Sci. Comput..

[47]  Axel Klawonn,et al.  FETI-DP Methods with an Adaptive Coarse Space , 2015, SIAM J. Numer. Anal..

[48]  Martin J. Gander,et al.  Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains: Part I , 2017, SIAM J. Numer. Anal..

[49]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .