Local and global order 3/2 convergence of a surrogate evolutionary algorithm

A Quasi-Monte-Carlo method based on the computation of a surrogate model of the fitness function is proposed, and its convergence at super-linear rate 3/2 is proved under rather mild assumptions on the fitness function -- but assuming that the starting point lies within a small neighborhood of a global maximum. A memetic algorithm is then constructed, that performs both a random exploration of the search space and the exploitation of the best-so-far points using the previous surrogate local algorithm, coupled through selection. Under the same mild hypotheses, the global convergence of the memetic algorithm, at the same 3/2 rate, is proved.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[3]  Hisao Ishibuchi,et al.  Special Issue on Memetic Algorithms , 2007, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Marc Schoenauer,et al.  Rigorous Hitting Times for Binary Mutations , 1999, Evolutionary Computation.

[5]  William E. Hart,et al.  A Convergence Analysis of Unconstrained and Bound Constrained Evolutionary Pattern Search , 2001, Evolutionary Computation.

[6]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[7]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[8]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[9]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[10]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[11]  Bernd Freisleben,et al.  New Genetic Local Search Operators for the Traveling Salesman Problem , 1996, PPSN.

[12]  S. Griffis EDITOR , 1997, Journal of Navigation.

[13]  Jan Poland Explicit Local Models: Towards "Optimal" Optimization Algorithms , 2004, ECML.

[14]  A. Dickson On Evolution , 1884, Science.

[15]  Günter Rudolph,et al.  Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[17]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[18]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[19]  Olivier François,et al.  An evolutionary strategy for global minimization and its Markov chain analysis , 1998, IEEE Trans. Evol. Comput..

[20]  Günter Rudolph,et al.  How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.

[21]  Raphaël Cerf,et al.  An Asymptotic Theory of Genetic Algorithms , 1995, Artificial Evolution.

[22]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[23]  G. Unter Rudolph Convergence Rates of Evolutionary Algorithms for a Class of Convex Objective Functions , 1997 .