Toward formal models of biologically inspired, highly parallel machine cognition

The relentless march of multiple-core chip technology is creating intractable massively parallel programming challenges. High level mental processes in many animals, and their social analogs, present similar problems, and recent mathematical models addressing them appear adaptable to the multi-core conundrum. But biological and cultural evolution have taken, respectively, the better part of a half-billion years to stabilise high order mental functions in living organisms, and 10,000 years to constrain the behaviour of human institutions, in both cases with limited success. Stabilising large networks of highly intelligent devices seems as fundamentally difficult as programming them.

[1]  R. Wallace,et al.  Information Theory, Scaling Laws and the Thermodynamics of Evolution. , 1998, Journal of theoretical biology.

[2]  Béla Bollobás,et al.  Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions , 2005, Biological Cybernetics.

[3]  Ian Stewart,et al.  Networking opportunity , 2004, Nature.

[4]  Rodrick Wallace,et al.  A Global Workspace perspective on mental disorders , 2005, Theoretical Biology and Medical Modelling.

[5]  IEEE Power Engineering Society General Meeting , 2007, 2007 IEEE Power Engineering Society General Meeting.

[6]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[7]  Fred I. Dretske,et al.  The explanatory role of information , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  B. Baars Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. , 2005, Progress in brain research.

[9]  I. Dobson Where is the edge for cascading failure?: challenges and opportunities for quantifying blackout risk , 2007, 2007 IEEE Power Engineering Society General Meeting.

[10]  Vito Latora,et al.  Modeling cascading failures in the North American power grid , 2005 .

[11]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[12]  Christian Müller-Schloer,et al.  Emergence in Organic Computing Systems: Discussion of a Controversial Concept , 2006, ATC.

[13]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[14]  S. Dehaene,et al.  Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework , 2001, Cognition.

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Eric Goubault,et al.  Dihomotopy as a Tool in State Space Analysis , 2002, LATIN.

[17]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[18]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[19]  B. Baars,et al.  How conscious experience and working memory interact , 2003, Trends in Cognitive Sciences.

[20]  J. McCauley Chaos, dynamics, and fractals : an algorithmic approach to deterministic chaos , 1993 .

[21]  A. Weinstein Groupoids: unifying internal and external symmetry , 1996, math/9602220.

[22]  Ronald Brown From Groups to Groupoids: a Brief Survey , 1987 .

[23]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[24]  Declan Butler The petaflop challenge , 2007, Nature.

[25]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[26]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[27]  Vimla L. Patel,et al.  The multitasking clinician: Decision-making and cognitive demand during and after team handoffs in emergency care , 2007, Int. J. Medical Informatics.

[28]  John M. Lee Introduction to Topological Manifolds , 2000 .

[29]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[30]  Vimla L. Patel,et al.  A cognitive blueprint of collaboration in context: Distributed cognition in the psychiatric emergency department , 2006, Artif. Intell. Medicine.

[31]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[32]  Vladimir F. Kovalev,et al.  The Bogoliubov renormalization group and solution symmetry in mathematical physics , 2000 .

[33]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[34]  Rodrick Wallace,et al.  Rate Distortion Manifolds as Model Spaces for Cognitive Information , 2009, Informatica.

[35]  James D. Hollan,et al.  Distributed cognition: toward a new foundation for human-computer interaction research , 2000, TCHI.

[36]  Daniel J. Simons,et al.  Inattentional blindness , 2007, Scholarpedia.

[37]  E. V. Krishnamurthy,et al.  On Engineering Smart Systems , 2005, KES.

[38]  R. Wallace Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model , 2005 .

[39]  D. Simons Attentional capture and inattentional blindness , 2000, Trends in Cognitive Sciences.

[40]  Béla Bollobás,et al.  Neuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics , 2004, ACRI.

[41]  R. Wallace,et al.  Adaptation, Punctuation and Information: A Rate-Distortion Approach to Non-Cognitive 'Learning Plateaus' in Evolutionary Process , 2002, Acta biotheoretica.

[42]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[43]  Tomasz Łuczak,et al.  On the number of sparse connected graphs , 1990 .

[44]  Daniel T Levin,et al.  Inattentional blindness for a noxious multimodal stimulus. , 2005, The American journal of psychology.

[45]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[46]  Hartmut Schmeck,et al.  Organic Computing - A New Vision for Distributed Embedded Systems , 2005, ISORC.

[47]  Rodrick Wallace,et al.  Language and Coherent Neural Amplification in Hierarchical Systems: Renormalization and the Dual Information Source of a generalized Spatiotemporal Stochastic Resonance , 2000, Int. J. Bifurc. Chaos.

[48]  Peter R. Krebs,et al.  Models of Cognition: Neurological possibility does not indicate neurological plausibility , 2005 .

[49]  C. Chabris,et al.  Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events , 1999, Perception.

[50]  Rodrick M Wallace,et al.  Theoretical Biology and Medical Modelling Open Access Collective Consciousness and Its Pathologies: Understanding the Failure of Aids Control and Treatment in the United States , 2022 .

[51]  L. Goddard Information Theory , 1962, Nature.

[52]  Alan Weinstein,et al.  Geometric Models for Noncommutative Algebras , 1999 .

[53]  E. V. Krishnamurthy,et al.  Algorithmic Entropy, Phase Transition, and Smart Systems , 2003, International Conference on Computational Science.

[54]  W. Freeman The wave packet: an action potential for the 21st century. , 2003, Journal of integrative neuroscience.

[55]  Rodrick Wallace,et al.  The sleep cycle: a mathematical analysis from a global workspace perspective , 2005 .

[56]  I. Cohen,et al.  Immune information, self-organization and meaning. , 1998, International immunology.

[57]  Richard E. Nisbett,et al.  Culture and Change Blindness , 2006, Cogn. Sci..

[58]  Christian Müller-Schloer,et al.  Quantitative Emergence , 2006, 2006 IEEE Mountain Workshop on Adaptive and Learning Systems.

[59]  Eric Goubault,et al.  SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY , 2003 .

[60]  R Wallace,et al.  Organisms, organizations and interactions: an information theory approach to biocultural evolution. , 1999, Bio Systems.

[61]  J. Changeux,et al.  Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness , 2005, PLoS biology.

[62]  M. Newman Properties of highly clustered networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[64]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[65]  K. Wilson The renormalization group and critical phenomena , 1983 .

[66]  D. Hartl,et al.  Principles of population genetics , 1981 .

[67]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[68]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[69]  Christian Müller-Schloer,et al.  Organic computing: on the feasibility of controlled emergence , 2004, CODES+ISSS '04.

[70]  Hartmut Schmeck,et al.  Organic Computing – Addressing Complexity by Controlled Self-Organization , 2006, Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006).

[71]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[72]  V L Patel,et al.  Individual to collaborative cognition: a paradigm shift? , 1998, Artificial intelligence in medicine.

[73]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[74]  R. Wallace Culture and inattentional blindness: a global workspace perspective. , 2007, Journal of Theoretical Biology.

[75]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[76]  I. Cohen Tending Adam's Garden: Evolving the Cognitive Immune Self , 2004 .

[77]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[78]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[79]  Hartmut Schmeck,et al.  Towards a generic observer/controller architecture for Organic Computing , 2006, GI Jahrestagung.

[80]  Geoffrey Grimmett,et al.  Critical probabilities for site and bond percolation models , 1998 .

[81]  R. Bosker Boekbespreking van "A.S. Bryk & S.W. Raudenbusch - Hierarchical linear models: Applications and data analysis methods" : Sage Publications, Newbury Parki, London/New Delhi 1992 , 1995 .

[82]  Rodrick Wallace,et al.  The Failure Of Aids Control And Treatment In The Us , 2008 .

[83]  G. Tononi An information integration theory of consciousness , 2004, BMC Neuroscience.

[84]  Martin H. Levinson Not by Genes Alone: How Culture Transformed Human Evolution , 2006 .

[85]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[87]  Georgios C. Anagnostopoulos,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2003, Lecture Notes in Computer Science.

[88]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[89]  B. Baars A cognitive theory of consciousness , 1988 .

[90]  L. Gunderson Ecological Resilience—In Theory and Application , 2000 .

[91]  M. Bennett,et al.  Philosophical Foundations of Neuroscience , 2006, History & Philosophy of Psychology.

[92]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[93]  William Francis Pohl,et al.  Differential geometry of higher order , 1962 .

[94]  Z. Arvasi,et al.  ON ALGEBRAIC MODELS FOR HOMOTOPY 3-TYPES , 2006 .

[95]  Tomasz Luczak On the Number of Sparse Connected Graphs , 1990, Random Struct. Algorithms.