Multitime Distribution in Discrete Polynuclear Growth

We study the multi-time distribution in a discrete polynuclear growth model or, equivalently, in directed last-passage percolation with geometric weights. A formula for the joint multi-time distribution function is derived in the discrete setting. It takes the form of a multiple contour integral of a block Fredholm determinant. The asymptotic multi-time distribution is then computed by taking the appropriate KPZ-scaling limit of this formula. This distribution is expected to be universal for models in the Kardar-Parisi-Zhang universality class.

[1]  A. Borodin,et al.  Lectures on integrable probability , 2012, 1212.3351.

[2]  S. Péché,et al.  Universality of slow decorrelation in KPZ growth , 2010, 1001.5345.

[3]  J. Baik,et al.  Multipoint distribution of periodic TASEP , 2017, Journal of the American Mathematical Society.

[4]  T. Sasamoto,et al.  Dynamics of a Tagged Particle in the Asymmetric Exclusion Process with the Step Initial Condition , 2007 .

[5]  K. Johansson The two-time distribution in geometric last-passage percolation , 2018, Probability Theory and Related Fields.

[6]  Current Distribution and Random Matrix Ensembles for an Integrable Asymmetric Fragmentation Process , 2004, cond-mat/0405464.

[7]  B'alint Vir'ag,et al.  The directed landscape , 2018, Acta Mathematica.

[8]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[9]  Zhipeng Liu Multi-time distribution of TASEP , 2019 .

[10]  21pYO-3 Spatial correlations of the 1D KPZ surface on a flat substrate , 2005, cond-mat/0504417.

[11]  Alexei Borodin,et al.  Large Time Asymptotics of Growth Models on Space-like Paths II: PNG and Parallel TASEP , 2007, 0707.4207.

[12]  Fluctuation Properties of the TASEP with Periodic Initial Configuration , 2006, math-ph/0608056.

[13]  P. Ferrari Slow decorrelations in Kardar–Parisi–Zhang growth , 2008 .

[14]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[15]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[16]  A. Hammond,et al.  Brownian Gibbs property for Airy line ensembles , 2011, 1108.2291.

[17]  K. Takeuchi,et al.  Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence , 2012, 1203.2530.

[18]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[19]  J. Quastel Introduction to KPZ , 2011 .

[20]  A. Hammond Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation , 2016, Memoirs of the American Mathematical Society.

[21]  Jon Warren Dyson's Brownian motions, intertwining and interlacing , 2005 .

[22]  Determinantal transition kernels for some interacting particles on the line , 2008 .

[23]  J. D. Nardis,et al.  Tail of the two-time height distribution for KPZ growth in one dimension , 2016, 1612.08695.

[24]  K. Takeuchi,et al.  Memory and Universality in Interface Growth. , 2016, Physical review letters.

[25]  Ivan Corwin The Kardar-Parisi-Zhang equation and universality class , 2011, 1106.1596.

[26]  P. Ferrari,et al.  Time-time Covariance for Last Passage Percolation with Generic Initial Profile , 2018, Mathematical Physics, Analysis and Geometry.

[27]  Riddhipratim Basu,et al.  Time Correlation Exponents in Last Passage Percolation , 2018, Progress in Probability.

[28]  Determinantal transition kernels for some interacting particles on the line , 2007, 0707.1843.

[29]  Long and Short Time Asymptotics of the Two-Time Distribution in Local Random Growth , 2019, 1904.08195.

[30]  G. Schütz Exact solution of the master equation for the asymmetric exclusion process , 1997 .

[31]  K. Johansson A multi-dimensional Markov chain and the Meixner ensemble , 2007, 0707.0098.

[32]  H. Spohn,et al.  Reflected Brownian Motions in the KPZ Universality Class , 2016, 1702.03910.

[33]  P. Le Doussal,et al.  Two-time height distribution for 1D KPZ growth: the recent exact result and its tail via replica , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[34]  Neil O'Connell,et al.  Conditioned random walks and the RSK correspondence , 2003 .

[35]  Daniel Remenik,et al.  The KPZ fixed point , 2016, Acta Mathematica.