Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection.

[1]  A. Heeger,et al.  Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. , 2007, Journal of the American Chemical Society.

[2]  Guo-Li Shen,et al.  Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. , 2007, Analytical chemistry.

[3]  G. Shen,et al.  G-rich oligonucleotide-functionalized gold nanoparticle aggregation , 2007, Analytical and bioanalytical chemistry.

[4]  Chunhai Fan,et al.  A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. , 2007, Journal of the American Chemical Society.

[5]  Kevin W Plaxco,et al.  Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. , 2007, Analytical chemistry.

[6]  Nadrian C Seeman,et al.  RNA used to control a DNA rotary nanomachine. , 2006, Nano letters.

[7]  B. Saccà,et al.  DNA Nanomachines and Nanostructures Involving Quadruplexes , 2006 .

[8]  Arica A Lubin,et al.  Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex , 2006, Proceedings of the National Academy of Sciences.

[9]  F. Simmel,et al.  Single-pair FRET characterization of DNA tweezers. , 2006, Nano letters.

[10]  Ciara K O'Sullivan,et al.  Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. , 2006, Chemical communications.

[11]  A. Heeger,et al.  Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[12]  Kevin W Plaxco,et al.  Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[14]  Taekjip Ha,et al.  Single molecule nanometronome. , 2006, Nano letters.

[15]  S. Balasubramanian,et al.  A reversible pH-driven DNA nanoswitch array. , 2006, Journal of the American Chemical Society.

[16]  Ciara K O'Sullivan,et al.  Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. , 2006, Journal of the American Chemical Society.

[17]  S. Balasubramanian,et al.  DNA molecular motor driven micromechanical cantilever arrays. , 2005, Journal of the American Chemical Society.

[18]  Kevin W Plaxco,et al.  A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. , 2005, Journal of the American Chemical Society.

[19]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[20]  Daoben Zhu,et al.  Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. , 2005, Journal of the American Chemical Society.

[21]  C. Mirkin,et al.  G-quartet-induced nanoparticle assembly. , 2005, Journal of the American Chemical Society.

[22]  Edward J. Wood,et al.  Biochemistry (3rd ed.) , 2004 .

[23]  Alexandre Restrepo,et al.  Aptasensor development: elucidation of critical parameters for optimal aptamer performance. , 2004, Analytical chemistry.

[24]  Chengde Mao,et al.  A DNA nanomachine based on a duplex-triplex transition. , 2004, Angewandte Chemie.

[25]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[26]  Chengde Mao,et al.  Molecular gears: a pair of DNA circles continuously rolls against each other. , 2004, Journal of the American Chemical Society.

[27]  Mark W Grinstaff,et al.  DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. , 2004, Journal of the American Chemical Society.

[28]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[29]  Friedrich C Simmel,et al.  A DNA-based machine that can cyclically bind and release thrombin. , 2004, Angewandte Chemie.

[30]  Chengde Mao,et al.  Putting a brake on an autonomous DNA nanomotor. , 2004, Journal of the American Chemical Society.

[31]  M. Jarstfer,et al.  A conformationally constrained nucleotide analogue controls the folding topology of a DNA g-quadruplex. , 2004, Journal of the American Chemical Society.

[32]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[33]  E. Banachowicz,et al.  Supramolecular Guanosine 5'-Monophosphate Structures in Solution. Light Scattering Study , 2004 .

[34]  A. Bard,et al.  Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy. , 2004, Journal of the American Chemical Society.

[35]  S. Balasubramanian,et al.  A proton-fuelled DNA nanomachine. , 2003, Angewandte Chemie.

[36]  Gang Wu,et al.  Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. , 2003, Journal of the American Chemical Society.

[37]  Chunhai Fan,et al.  Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Keith R Fox,et al.  Stability of intramolecular DNA quadruplexes: comparison with DNA duplexes. , 2003, Biochemistry.

[39]  Jean-Louis Mergny,et al.  DNA duplex–quadruplex exchange as the basis for a nanomolecular machine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Linford,et al.  Heterogeneous electron-transfer kinetics for ruthenium and ferrocene redox moieties through alkanethiol monolayers on gold. , 2003, Journal of the American Chemical Society.

[41]  Weihong Tan,et al.  A Single DNA Molecule Nanomotor , 2002 .

[42]  Bernard Yurke,et al.  A DNA-based molecular device switchable between three distinct mechanical states , 2002 .

[43]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[44]  H. Yowanto,et al.  Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. , 2001, Journal of the American Chemical Society.

[45]  S. Creager,et al.  Redox Kinetics in Monolayers on Electrodes: Electron Transfer Is Sluggish for Ferrocene Groups Buried within the Monolayer Interior† , 2001 .

[46]  F. Simmel,et al.  Using DNA to construct and power a nanoactuator. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  S. Longhi Spiral waves in optical parametric oscillators , 2001 .

[48]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[49]  S. Creager,et al.  Long-Range Heterogeneous Electron Transfer Between Ferrocene and Gold Mediated By n-Alkane and N-Alkyl-Carboxamide Bridges , 2000 .

[50]  Raz Jelinek,et al.  Cation-Selective Color Sensors Composed of Ionophore-Phospholipid-Polydiacetylene Mixed Vesicles , 2000 .

[51]  Chao‐Jun Li,et al.  A Highly Selective Fluorescent Chemosensor for K+ from a Bis-15-Crown-5 Derivative , 1999 .

[52]  E. Lam,et al.  Electron Transfer at Electrodes through Conjugated “Molecular Wire” Bridges , 1999 .

[53]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[54]  T. T. Wooster,et al.  A New Way of Using ac Voltammetry To Study Redox Kinetics in Electroactive Monolayers , 1998 .

[55]  J. Lakowicz,et al.  Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes. , 1998, Analytical chemistry.

[56]  T. Pinnavaia,et al.  Alkali metal ion specificity in the solution ordering of a nucleotide, 5'-guanosine monophosphate , 1978 .