A local level-set method using a hash table data structure

We present a local level-set method based on the hash table data structure, which allows the storage of only a band of grid points adjacent to the interface while providing an O(1) access to the data. We discuss the details of the construction of the hash table data structure as well as the advection and reinitialization schemes used for our implementation of the level-set method. We propose two dimensional numerical examples and compare the results to those obtained with a quadtree data structure. Our study indicates that the method is straightforward to implement but suffers from limitations that make it less efficient than the quadtree data structure.

[1]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[2]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[3]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[4]  Jonathan Dinerstein,et al.  Modeling and rendering viscous liquids , 2004, Comput. Animat. Virtual Worlds.

[5]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[6]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[7]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[8]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[10]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[13]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[14]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[15]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[16]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[17]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[18]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[21]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[22]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[23]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[24]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .