Dynamic response of sandwich panels with auxetic cores

Effective properties and dynamic response of a sandwich panel made of two face sheets and auxetic core are analyzed in this study by computer simulations. The inner composite layer is made of a cellular auxetic structure immersed in a filler material of a given Poisson's ratio (filler material fills the voids in structure). Each cell is composed of an auxetic structure (re-entrant honeycomb or rotating square), i.e., exhibiting negative Poisson's ratio without any filler. Influence of filler material on the effective properties of the sandwich panel is investigated. The proposed structure shows interesting structural characteristics and dynamic properties. Our results clearly show that it is possible to create auxetic sandwich panels made of two solid materials with positive Poisson's ratio. This is even possible if the filler material is nearly incompressible, but can move in out-of-plane direction. Moreover, effective Young's modulus of such sandwich panels becomes very large if the Poisson's ratio of the filler material tends to −1.

[1]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[2]  T. Stręk,et al.  Computer simulation of heat transfer through a ferrofluid , 2007 .

[3]  A. Poźniak,et al.  Poisson's ratio of rectangular anti‐chiral structures with size dispersion of circular nodes , 2014 .

[4]  T. Lim FLEXURAL RIGIDITY OF THIN AUXETIC PLATES , 2014 .

[5]  Zoe A. D. Lethbridge,et al.  Direct, static measurement of single-crystal Young's moduli of the zeolite natrolite: Comparison with dynamic studies and simulations , 2006 .

[6]  M. Kozlov,et al.  Modeling the auxetic transition for carbon nanotube sheets , 2008, 0903.2892.

[7]  Ruben Gatt,et al.  Smart metamaterials with tunable auxetic and other properties , 2013 .

[8]  T. Lim,et al.  Wave motion in auxetic solids , 2014 .

[9]  Joseph N. Grima,et al.  Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching , 2013, Smart Materials and Structures.

[10]  Konstantin V. Tretiakov,et al.  Poisson's ratio of simple planar ‘isotropic’ solids in two dimensions , 2007 .

[11]  Fabrizio Scarpa,et al.  Passive and MR Fluid-coated Auxetic PU Foam – Mechanical, Acoustic, and Electromagnetic Properties , 2004 .

[12]  Massimo Ruzzene Vibration and sound radiation of sandwich beams with honeycomb truss core , 2004 .

[13]  Massimo Ruzzene,et al.  Dynamic Response of Chiral Truss-core Assemblies , 2006 .

[14]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[15]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[16]  K. Wojciechowski Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .

[17]  Joseph N. Grima,et al.  Modeling auxetic foams through semi‐rigid rotating triangles , 2014 .

[18]  T. Lim Vibration of thick auxetic plates , 2014 .

[19]  Massimo Ruzzene,et al.  Elasto-static micropolar behavior of a chiral auxetic lattice , 2012 .

[20]  T. Lim Shear Deformation in Rectangular Auxetic Plates , 2014 .

[21]  K. Wojciechowski,et al.  Remarks on Poisson ratio beyond the limits of the elasticity theory , 2003 .

[22]  Joseph N. Grima,et al.  On the suitability of hexagonal honeycombs as stent geometries , 2014 .

[23]  T. Lim Buckling and Vibration of Circular Auxetic Plates , 2014 .

[24]  K. Wojciechowski,et al.  Two-dimensional isotropic system with a negative poisson ratio , 1989 .

[25]  Kenneth E. Evans,et al.  Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites , 2005 .

[26]  Joseph N. Grima,et al.  Auxetic Materials and Related Systems , 2014 .

[27]  C. Mayer,et al.  Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes , 2001, Nature.

[28]  Kenneth E. Evans,et al.  Modelling negative poisson ratio effects in network-embedded composites , 1992 .

[29]  R. Lakes Advances in negative Poisson's ratio materials , 1993 .

[30]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[31]  Tomasz Strek,et al.  Computational analysis of sandwich‐structured composites with an auxetic phase , 2014 .

[32]  M. El‐Raheb,et al.  Frequency response of a two-dimensional trusslike periodic panel , 1997 .

[33]  T. Stręk,et al.  Effective mechanical properties of concentric cylindrical composites with auxetic phase , 2012 .

[34]  Wojciechowski,et al.  Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.

[35]  Roderic S. Lakes,et al.  Deformation mechanisms in negative Poisson's ratio materials: structural aspects , 1991 .

[36]  Daphne Attard,et al.  Auxetic behaviour from connected different-sized squares and rectangles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Norman A. Fleck,et al.  Fabrication and structural performance of periodic cellular metal sandwich structures , 2003 .

[38]  G. Stavroulakis,et al.  Effective Dynamic Material Properties for Materials with Non-Convex Microstructures , 2008 .

[39]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[40]  Katia Bertoldi,et al.  Low Porosity Metallic Periodic Structures with Negative Poisson's Ratio , 2014, Advanced materials.

[41]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[42]  Ruben Gatt,et al.  Honeycomb composites with auxetic out-of-plane characteristics , 2013 .

[43]  K. Evans Auxetic polymers: a new range of materials , 1991 .

[44]  Joseph N. Grima,et al.  On the properties of real finite‐sized planar and tubular stent‐like auxetic structures , 2014 .

[45]  Ruben Gatt,et al.  Tailoring Graphene to Achieve Negative Poisson's Ratio Properties , 2015, Advanced materials.

[46]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[47]  Hong Hu,et al.  A review on auxetic structures and polymeric materials , 2010 .

[48]  M. Ruzzene,et al.  Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading , 2014 .

[49]  Andrés Díaz Lantada,et al.  Comparative study of auxetic geometries by means of computer-aided design and engineering , 2012 .

[50]  K. Zhou,et al.  Mechanical properties and structures of bulk nanomaterials based on carbon nanopolymorphs , 2014 .

[51]  R. Lakes Materials science: A broader view of membranes , 2001, Nature.

[52]  K. Bertoldi,et al.  Negative Poisson's Ratio Behavior Induced by an Elastic Instability , 2010, Advanced materials.

[53]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[54]  J. Smardzewski,et al.  Computer simulations of auxetic foams in two dimensions , 2013 .

[55]  T. Lim Elastic stability of thick auxetic plates , 2014 .

[56]  Joseph N. Grima,et al.  Negative Poisson's ratios from rotating rectangles , 2004 .

[57]  Kenneth E. Evans,et al.  Modelling concurrent deformation mechanisms in auxetic microporous polymers , 1997 .

[58]  Y. Shibutani,et al.  Atomistic characterization of structural and elastic properties of auxetic crystalline SiO2 , 2007 .

[59]  Fodil Meraghni,et al.  Mechanical behaviour of cellular core for structural sandwich panels , 1999 .

[60]  M. Kowalik,et al.  Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Zhong‐Ming Li,et al.  Review on auxetic materials , 2004 .