Feedback linearization based control of a rotational hydraulic drive

Abstract The technique of feedback linearization is used to design controllers for displacement, velocity and differential pressure control of a rotational hydraulic drive. The controllers, which take into account the square-root nonlinearity in the system's dynamics, are implemented on an experimental test-bench and results of performance evaluation tests are presented. The objective of this research is two-fold: firstly, to present a unified method for tracking control of displacement, velocity and differential pressure; and secondly, to experimentally address the issue of whether the system can be modeled with sufficient accuracy to effectively cancel out the nonlinearities in a real-world system.