From ceramic–matrix nanocomposites to the synthesis of carbon nanotubes
暂无分享,去创建一个
[1] A. Rousset,et al. Mössbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles , 2000 .
[2] Alan M. Cassell,et al. Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .
[3] A. Rousset,et al. An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_1−xM_xAl_2O_4 spinel catalysts , 1999 .
[4] A. Rousset,et al. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .
[5] Kenneth A. Smith,et al. Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .
[6] A. Rousset,et al. Chemical synthesis and characterization of Fe0.65Ni0.35-MgO nanocomposite powders , 1997 .
[7] A. Rousset,et al. Carbon nanotubes grown in situ by a novel catalytic method , 1997 .
[8] A. Rinzler,et al. SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .
[9] A. Rousset,et al. Synthesis, microstructure and oxidation of Co-MgAl2O4 and Ni-MgAl2O4 nanocomposite powders , 1996 .
[10] F. Gourbilleau,et al. Modification by high energy ion irradiation of iron-alumina nano-composites , 1996 .
[11] A. Rousset,et al. Metal-Oxide Ceramic Matrix Nanocomposites , 1995 .
[12] Abel Rousset,et al. Alumina-Metal (Fe, Cr, Fe0.8Cr0.2) Nanocomposites , 1994 .
[13] A. Rousset,et al. Fe–Cr/Al_2O_3 metal-ceramic composites: Nature and size of the metal particles formed during hydrogen reduction , 1994 .
[14] A. Rousset,et al. Chemical synthesis of metal nanoparticles dispersed in alumina , 1993 .
[15] A. Rousset,et al. Investigations of iron-alumina metal-ceramic composites: Effect of ruthenium and nickel on the hydrogen reduction of trivalent iron during the formation of the composite , 1993 .
[16] A. Rousset,et al. Iron-alumina interface in ceramic matrix nanocomposites , 1992 .
[17] A. Rousset,et al. On a series of nanoparticles of iron epitaxed on Al2O3: a new field, temperature and concentration (of Fe) scaling plot of the magnetization curves , 1992 .
[18] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[19] D. Rancourt,et al. Reentrant magnetism, antiferromagnetism, and domain wall pinning in nominally ferromagnetic Fe-Ni invar , 1989 .
[20] K. C. Patil,et al. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials , 1988 .
[21] J. A. Pask,et al. Ceramic Microstructures '86: Role of Interfaces , 1988 .
[22] I. Ortalli,et al. Mössbauer effect in Fe-Ni alloys near 32% Ni region , 1986 .
[23] J. Hesse,et al. Hyperfine field vectors and hyperfine field distributions in FeNi Invar alloys , 1984 .
[24] R. Roy,et al. Diphasic xerogels: I. Ceramic-metal composites , 1984 .
[25] S. Nasu,et al. Mössbauer spectroscopy of Fe-Ni and Fe-Pt alloys , 1979 .
[26] J. Dubois,et al. Etude par spectrométrie Mössbauer des carbures de Fer Fe3C et Fe5C2 , 1976 .
[27] H. Rechenberg,et al. Champs hyperfins et modele semi-microscopique non-local de l'invar , 1973 .
[28] Hiroshi Watanabe,et al. Temperature-Dependent Distribution of Internal Magnetic Fields at Fe57 Nuclei in fcc Iron-Nickel Alloys , 1971 .
[29] S. Kachi,et al. Concentration Fluctuations and Anomalous Properties of the Invar Alloy , 1969 .
[30] M. Shiga,et al. Mossbauer Study of Invar-Type Iron-Nickel Alloys , 1964 .
[31] R. Weiss. The Origin of the `Invar' Effect , 1963 .
[32] T. Cranshaw,et al. The Mössbauer Effect in Iron Alloys , 1963 .
[33] E. Kondorsky,et al. Antiferromagnetism of Iron in Face-Centered Crystalline Lattice and the Causes of Anomalies in Invar Physical Properties , 1960 .
[34] Emmanuel Flahaut,et al. Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes , 2000 .
[35] A. Rousset,et al. Influence of the composition of a H2-CH4 gas mixture on the catalytic synthesis of carbon nanotubes-Fe/Fe3C-Al2O3 nanocomposite powders , 1999 .
[36] A. Rousset,et al. Synthesis and characterization of Fe/Co/Ni alloys-MgO nanocomposite powders , 1999 .
[37] A. Rousset,et al. Metal nanoparticles for the catalytic synthesis of carbon nanotubes , 1998 .
[38] A. Rousset,et al. Synthesis of carbon nanotube–Fe-Al2O3 nanocomposite powders by selective reduction of different Al1.8Fe0.2O3 solid solutions , 1998 .
[39] A. Rousset,et al. Synthesis, characterization and thermal behaviour of Fe0.65Co0.35-MgAl2O4 and Fe0.65Ni0.35-MgAl2O4 nanocomposite powders , 1997 .
[40] L. B. Ebert. Science of fullerenes and carbon nanotubes , 1996 .
[41] A. Rousset,et al. Elaboration, microstructure and oxidation behavior of metal-alumina and metal-chromia nanocomposite powders , 1995 .
[42] A. Rousset,et al. Reduction behaviour of Fe3+/Al2O3 obtained from the mixed oxalate precursor and the formation of the Fe0–Al2O3 metal–ceramic composite , 1993 .
[43] A. Rousset,et al. Microstructural and magnetic characterization of alumina-iron nanocomposites , 1993, Journal of Materials Science.
[44] S. Komarneni. Feature article. Nanocomposites , 1992 .
[45] J. A. Pask,et al. Ceramic Microstructures ’86 , 1987 .
[46] S. Komarneni,et al. Multi-Phasic Ceramic Composites made by Sol-Gel Technique , 1984 .
[47] J. Christensen. Doctoral thesis , 1970 .