From ceramic–matrix nanocomposites to the synthesis of carbon nanotubes

[1]  A. Rousset,et al.  Mössbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles , 2000 .

[2]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[3]  A. Rousset,et al.  An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_1−xM_xAl_2O_4 spinel catalysts , 1999 .

[4]  A. Rousset,et al.  Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .

[5]  Kenneth A. Smith,et al.  Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .

[6]  A. Rousset,et al.  Chemical synthesis and characterization of Fe0.65Ni0.35-MgO nanocomposite powders , 1997 .

[7]  A. Rousset,et al.  Carbon nanotubes grown in situ by a novel catalytic method , 1997 .

[8]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[9]  A. Rousset,et al.  Synthesis, microstructure and oxidation of Co-MgAl2O4 and Ni-MgAl2O4 nanocomposite powders , 1996 .

[10]  F. Gourbilleau,et al.  Modification by high energy ion irradiation of iron-alumina nano-composites , 1996 .

[11]  A. Rousset,et al.  Metal-Oxide Ceramic Matrix Nanocomposites , 1995 .

[12]  Abel Rousset,et al.  Alumina-Metal (Fe, Cr, Fe0.8Cr0.2) Nanocomposites , 1994 .

[13]  A. Rousset,et al.  Fe–Cr/Al_2O_3 metal-ceramic composites: Nature and size of the metal particles formed during hydrogen reduction , 1994 .

[14]  A. Rousset,et al.  Chemical synthesis of metal nanoparticles dispersed in alumina , 1993 .

[15]  A. Rousset,et al.  Investigations of iron-alumina metal-ceramic composites: Effect of ruthenium and nickel on the hydrogen reduction of trivalent iron during the formation of the composite , 1993 .

[16]  A. Rousset,et al.  Iron-alumina interface in ceramic matrix nanocomposites , 1992 .

[17]  A. Rousset,et al.  On a series of nanoparticles of iron epitaxed on Al2O3: a new field, temperature and concentration (of Fe) scaling plot of the magnetization curves , 1992 .

[18]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[19]  D. Rancourt,et al.  Reentrant magnetism, antiferromagnetism, and domain wall pinning in nominally ferromagnetic Fe-Ni invar , 1989 .

[20]  K. C. Patil,et al.  A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials , 1988 .

[21]  J. A. Pask,et al.  Ceramic Microstructures '86: Role of Interfaces , 1988 .

[22]  I. Ortalli,et al.  Mössbauer effect in Fe-Ni alloys near 32% Ni region , 1986 .

[23]  J. Hesse,et al.  Hyperfine field vectors and hyperfine field distributions in FeNi Invar alloys , 1984 .

[24]  R. Roy,et al.  Diphasic xerogels: I. Ceramic-metal composites , 1984 .

[25]  S. Nasu,et al.  Mössbauer spectroscopy of Fe-Ni and Fe-Pt alloys , 1979 .

[26]  J. Dubois,et al.  Etude par spectrométrie Mössbauer des carbures de Fer Fe3C et Fe5C2 , 1976 .

[27]  H. Rechenberg,et al.  Champs hyperfins et modele semi-microscopique non-local de l'invar , 1973 .

[28]  Hiroshi Watanabe,et al.  Temperature-Dependent Distribution of Internal Magnetic Fields at Fe57 Nuclei in fcc Iron-Nickel Alloys , 1971 .

[29]  S. Kachi,et al.  Concentration Fluctuations and Anomalous Properties of the Invar Alloy , 1969 .

[30]  M. Shiga,et al.  Mossbauer Study of Invar-Type Iron-Nickel Alloys , 1964 .

[31]  R. Weiss The Origin of the `Invar' Effect , 1963 .

[32]  T. Cranshaw,et al.  The Mössbauer Effect in Iron Alloys , 1963 .

[33]  E. Kondorsky,et al.  Antiferromagnetism of Iron in Face-Centered Crystalline Lattice and the Causes of Anomalies in Invar Physical Properties , 1960 .

[34]  Emmanuel Flahaut,et al.  Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes , 2000 .

[35]  A. Rousset,et al.  Influence of the composition of a H2-CH4 gas mixture on the catalytic synthesis of carbon nanotubes-Fe/Fe3C-Al2O3 nanocomposite powders , 1999 .

[36]  A. Rousset,et al.  Synthesis and characterization of Fe/Co/Ni alloys-MgO nanocomposite powders , 1999 .

[37]  A. Rousset,et al.  Metal nanoparticles for the catalytic synthesis of carbon nanotubes , 1998 .

[38]  A. Rousset,et al.  Synthesis of carbon nanotube–Fe-Al2O3 nanocomposite powders by selective reduction of different Al1.8Fe0.2O3 solid solutions , 1998 .

[39]  A. Rousset,et al.  Synthesis, characterization and thermal behaviour of Fe0.65Co0.35-MgAl2O4 and Fe0.65Ni0.35-MgAl2O4 nanocomposite powders , 1997 .

[40]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[41]  A. Rousset,et al.  Elaboration, microstructure and oxidation behavior of metal-alumina and metal-chromia nanocomposite powders , 1995 .

[42]  A. Rousset,et al.  Reduction behaviour of Fe3+/Al2O3 obtained from the mixed oxalate precursor and the formation of the Fe0–Al2O3 metal–ceramic composite , 1993 .

[43]  A. Rousset,et al.  Microstructural and magnetic characterization of alumina-iron nanocomposites , 1993, Journal of Materials Science.

[44]  S. Komarneni Feature article. Nanocomposites , 1992 .

[45]  J. A. Pask,et al.  Ceramic Microstructures ’86 , 1987 .

[46]  S. Komarneni,et al.  Multi-Phasic Ceramic Composites made by Sol-Gel Technique , 1984 .

[47]  J. Christensen Doctoral thesis , 1970 .