Efficient vectors for simple perturbed consistent matrices
暂无分享,去创建一个
[1] J. Barzilai. Deriving weights from pairwise comparison matrices , 1997 .
[2] Örs Rebák,et al. Efficiency analysis of double perturbed pairwise comparison matrices , 2015, Fundam. Informaticae.
[3] Gang Kou,et al. Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction , 2014, Eur. J. Oper. Res..
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] Konrad Kulakowski,et al. Towards quantification of incompleteness in the pairwise comparisons method , 2018, Int. J. Approx. Reason..
[6] T. L. Saaty. A Scaling Method for Priorities in Hierarchical Structures , 1977 .
[7] Pál Rózsa,et al. Consistency adjustments for pairwise comparison matrices , 2003, Numer. Linear Algebra Appl..
[8] Dejian Yu,et al. Analysis of Collaboration Evolution in AHP Research: 1982-2018 , 2020, Int. J. Inf. Technol. Decis. Mak..
[9] Yi Peng,et al. An Iterative Algorithm to Derive Priority From Large-Scale Sparse Pairwise Comparison Matrix , 2022, IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[10] Thomas L. Saaty,et al. Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..
[11] László Csató,et al. A characterization of the Logarithmic Least Squares Method , 2017, Eur. J. Oper. Res..
[12] János Fülöp,et al. A method for approximating pairwise comparison matrices by consistent matrices , 2008, J. Glob. Optim..
[13] T. Saaty,et al. The Analytic Hierarchy Process , 1985 .
[14] János Fülöp,et al. Deriving priorities from inconsistent PCM using network algorithms , 2015, Annals of Operations Research.
[15] Luis G. Vargas,et al. Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios , 1984 .
[16] Matteo Brunelli,et al. A survey of inconsistency indices for pairwise comparisons , 2018, Int. J. Gen. Syst..
[17] János Fülöp,et al. Efficient weight vectors from pairwise comparison matrices , 2016, Eur. J. Oper. Res..
[18] Eduardo Conde,et al. Inferring Efficient Weights from Pairwise Comparison Matrices , 2006, Math. Methods Oper. Res..
[19] N. Bebiano,et al. Reciprocal matrices: properties and approximation by a transitive matrix , 2020, Comput. Appl. Math..
[20] D'ora Gr'eta Petr'oczy,et al. On the monotonicity of the eigenvector method , 2019, Eur. J. Oper. Res..
[21] J. Fichtner. On deriving priority vectors from matrices of pairwise comparisons , 1986 .
[22] Rosário Fernandes,et al. Efficiency of the principal eigenvector of some triple perturbed consistent matrices , 2021, Eur. J. Oper. Res..
[23] ‖ut,et al. The Analysis of the Principal Eigenvector of Pairwise Comparison Matrices András Farkas , 2007 .
[24] Michele Fedrizzi,et al. The linear algebra of pairwise comparisons , 2020, Int. J. Approx. Reason..
[25] S. Bozóki,et al. Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency , 2014 .
[26] W. W. Koczkodaj,et al. Special cases of pairwise comparisons matrices represented by Toeplitz matrices , 2017, 1703.03669.
[27] Sándor Bozóki,et al. Efficiency Analysis of Simple Perturbed Pairwise Comparison Matrices , 2015, Fundam. Informaticae.
[28] Jaroslav Ramík,et al. Some new properties of inconsistent pairwise comparisons matrices , 2019, Int. J. Approx. Reason..
[29] Sándor Bozóki,et al. Solution of the least squares method problem of pairwise comparison matrices , 2008, Central Eur. J. Oper. Res..
[30] Luis G. Vargas,et al. Reply to “remarks on the analytic hierarchy process” by J. S. Dyer , 1990 .
[31] László Csató,et al. Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom , 2017, Group Decision and Negotiation.
[32] Waldemar W. Koczkodaj,et al. On Axiomatization of Inconsistency Indicators in Pairwise Comparisons , 2013, Int. J. Approx. Reason..
[33] Charles R. Johnson,et al. Right-left asymmetry in an eigenvector ranking procedure , 1979 .
[34] Yu Zhang,et al. Estimating priorities from relative deviations in pairwise comparison matrices , 2021, Inf. Sci..