Efficient vectors for simple perturbed consistent matrices

Abstract In the Analytic Hierarchy process, a method used in Decision Making, it may be important to approximate a pairwise comparison matrix (PC matrix) by a consistent one. In this context, the notion of efficient vector for a PC matrix arises. In this paper we describe all efficient vectors for an n × n comparison pairwise matrix obtained from a consistent one by perturbing one entry above the main diagonal, and the corresponding reciprocal entry. As a consequence, we give a simple proof of the result obtained by K. Abele-Nagy and S. Bozoki (2016) that states that the principal eigenvector of a simple perturbed consistent matrix is efficient. In addition, we consider a set of non-efficient vectors associated with the simple perturbed consistent matrix and describe all the efficient vectors that dominate each vector in that set.

[1]  J. Barzilai Deriving weights from pairwise comparison matrices , 1997 .

[2]  Örs Rebák,et al.  Efficiency analysis of double perturbed pairwise comparison matrices , 2015, Fundam. Informaticae.

[3]  Gang Kou,et al.  Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction , 2014, Eur. J. Oper. Res..

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Konrad Kulakowski,et al.  Towards quantification of incompleteness in the pairwise comparisons method , 2018, Int. J. Approx. Reason..

[6]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[7]  Pál Rózsa,et al.  Consistency adjustments for pairwise comparison matrices , 2003, Numer. Linear Algebra Appl..

[8]  Dejian Yu,et al.  Analysis of Collaboration Evolution in AHP Research: 1982-2018 , 2020, Int. J. Inf. Technol. Decis. Mak..

[9]  Yi Peng,et al.  An Iterative Algorithm to Derive Priority From Large-Scale Sparse Pairwise Comparison Matrix , 2022, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[10]  Thomas L. Saaty,et al.  Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..

[11]  László Csató,et al.  A characterization of the Logarithmic Least Squares Method , 2017, Eur. J. Oper. Res..

[12]  János Fülöp,et al.  A method for approximating pairwise comparison matrices by consistent matrices , 2008, J. Glob. Optim..

[13]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[14]  János Fülöp,et al.  Deriving priorities from inconsistent PCM using network algorithms , 2015, Annals of Operations Research.

[15]  Luis G. Vargas,et al.  Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios , 1984 .

[16]  Matteo Brunelli,et al.  A survey of inconsistency indices for pairwise comparisons , 2018, Int. J. Gen. Syst..

[17]  János Fülöp,et al.  Efficient weight vectors from pairwise comparison matrices , 2016, Eur. J. Oper. Res..

[18]  Eduardo Conde,et al.  Inferring Efficient Weights from Pairwise Comparison Matrices , 2006, Math. Methods Oper. Res..

[19]  N. Bebiano,et al.  Reciprocal matrices: properties and approximation by a transitive matrix , 2020, Comput. Appl. Math..

[20]  D'ora Gr'eta Petr'oczy,et al.  On the monotonicity of the eigenvector method , 2019, Eur. J. Oper. Res..

[21]  J. Fichtner On deriving priority vectors from matrices of pairwise comparisons , 1986 .

[22]  Rosário Fernandes,et al.  Efficiency of the principal eigenvector of some triple perturbed consistent matrices , 2021, Eur. J. Oper. Res..

[23]  ‖ut,et al.  The Analysis of the Principal Eigenvector of Pairwise Comparison Matrices András Farkas , 2007 .

[24]  Michele Fedrizzi,et al.  The linear algebra of pairwise comparisons , 2020, Int. J. Approx. Reason..

[25]  S. Bozóki,et al.  Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency , 2014 .

[26]  W. W. Koczkodaj,et al.  Special cases of pairwise comparisons matrices represented by Toeplitz matrices , 2017, 1703.03669.

[27]  Sándor Bozóki,et al.  Efficiency Analysis of Simple Perturbed Pairwise Comparison Matrices , 2015, Fundam. Informaticae.

[28]  Jaroslav Ramík,et al.  Some new properties of inconsistent pairwise comparisons matrices , 2019, Int. J. Approx. Reason..

[29]  Sándor Bozóki,et al.  Solution of the least squares method problem of pairwise comparison matrices , 2008, Central Eur. J. Oper. Res..

[30]  Luis G. Vargas,et al.  Reply to “remarks on the analytic hierarchy process” by J. S. Dyer , 1990 .

[31]  László Csató,et al.  Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom , 2017, Group Decision and Negotiation.

[32]  Waldemar W. Koczkodaj,et al.  On Axiomatization of Inconsistency Indicators in Pairwise Comparisons , 2013, Int. J. Approx. Reason..

[33]  Charles R. Johnson,et al.  Right-left asymmetry in an eigenvector ranking procedure , 1979 .

[34]  Yu Zhang,et al.  Estimating priorities from relative deviations in pairwise comparison matrices , 2021, Inf. Sci..