Kainate, a double agent that generates seizures: two decades of progress

[1]  H. Kamiya,et al.  Kainate receptor‐mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse , 2000, The Journal of physiology.

[2]  A. Rodríguez-Moreno,et al.  Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Nicoll,et al.  Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  X. Leinekugel,et al.  Maturation of kainate‐induced epileptiform activities in interconnected intact neonatal limbic structures in vitro , 1999, The European journal of neuroscience.

[5]  D. Kullmann,et al.  Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Isaac,et al.  Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses , 1999, Nature.

[7]  J. DeFelipe,et al.  Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy , 1999, Nature Neuroscience.

[8]  A. Marty,et al.  Presynaptic Effects of NMDA in Cerebellar Purkinje Cells and Interneurons , 1999, The Journal of Neuroscience.

[9]  G. Collingridge,et al.  The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus , 1998, Neuropharmacology.

[10]  R. Nicoll,et al.  Synaptic activation of kainate receptors on hippocampal interneurons , 1998, Nature Neuroscience.

[11]  Y. Ben-Ari,et al.  GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells , 1998, Nature Neuroscience.

[12]  D. Coulter,et al.  Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy , 1998, Nature Medicine.

[13]  Peter Somogyi,et al.  Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses , 1998, Nature.

[14]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[15]  C. Mulle,et al.  Potentiation of GABAergic synaptic transmission by AMPA receptors in mouse cerebellar stellate cells: changes during development , 1998, The Journal of physiology.

[16]  A. Rodríguez-Moreno,et al.  Kainate Receptor Modulation of GABA Release Involves a Metabotropic Function , 1998, Neuron.

[17]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[18]  Fred H. Gage,et al.  Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice , 1998, Nature.

[19]  Charles R. Breese,et al.  Acetylcholine Activates an α-Bungarotoxin-Sensitive Nicotinic Current in Rat Hippocampal Interneurons, But Not Pyramidal Cells , 1998, The Journal of Neuroscience.

[20]  Y. Ben-Ari,et al.  Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Collingridge,et al.  A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission , 1997, Nature.

[22]  A. Rodríguez-Moreno,et al.  Kainate Receptors Presynaptically Downregulate GABAergic Inhibition in the Rat Hippocampus , 1997, Neuron.

[23]  Robert C. Malenka,et al.  Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons , 1997, Nature.

[24]  G. Collingridge,et al.  The synaptic activation of kainate receptors , 1997, Nature.

[25]  D. Coulter,et al.  Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. , 1997, Journal of neurophysiology.

[26]  D. Henze,et al.  Large amplitude miniature excitatory postsynaptic currents in hippocampal CA3 pyramidal neurons are of mossy fiber origin. , 1997, Journal of neurophysiology.

[27]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[28]  Sloviter Rs,et al.  Hippocampal pathology and pathophysiology in temporal lobe epilepsy. , 1996 .

[29]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[30]  K. Holloway,et al.  Characterization of GABAA receptor function in human temporal cortical neurons. , 1996, Journal of neurophysiology.

[31]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[32]  I. Módy,et al.  Zinc-Induced Collapse of Augmented Inhibition by GABA in a Temporal Lobe Epilepsy Model , 1996, Science.

[33]  G. Collingridge,et al.  Regulation of glutamate release by presynaptic kainate receptors in the hippocampus , 1996, Nature.

[34]  R. S. Sloviter Hippocampal pathology and pathophysiology in temporal lobe epilepsy. , 1996, Neurologia.

[35]  R. Petralia,et al.  Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies , 1994, The Journal of comparative neurology.

[36]  W. Wisden,et al.  Kainate receptor gene expression in the developing rat brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Gaiarsa,et al.  Neonatal irradiation prevents the formation of hippocampal mossy fibers and the epileptic action of kainate on rat CA3 pyramidal neurons. , 1994, Journal of neurophysiology.

[39]  E. Cherubini,et al.  Depression of a sustained calcium current by kainate in rat hippocampal neurones in vitro. , 1991, The Journal of physiology.

[40]  G. Debonnel,et al.  Neurotoxic effect of domoic acid: mediation by kainate receptor electrophysiological studies in the rat. , 1990, Canada diseases weekly report = Rapport hebdomadaire des maladies au Canada.

[41]  Y. Ben-Ari,et al.  Effects of kainate on the excitability of rat hippocampal neurones , 1990, Epilepsy Research.

[42]  F. Dudek,et al.  Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats , 1988, Brain Research.

[43]  Y. Ben-Ari,et al.  Long‐lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. , 1988, The Journal of physiology.

[44]  Y. Ben-Ari,et al.  Kainate binding sites in the hippocampal mossy fibers: Localization and plasticity , 1987, Neuroscience.

[45]  Enrico Cherubini,et al.  Kainate reduces two voltage-dependent potassium conductances in rat hippocampal neurons in vitro , 1986, Brain Research.

[46]  Y. Ben-Ari,et al.  Limbic seizures induced by systemically applied kainic acid: how much kainic acid reaches the brain? , 1986, Advances in experimental medicine and biology.

[47]  Yehezkel Ben-Ari,et al.  Autoradiographic localization of kainic acid binding sites in the human hippocampus , 1985, Brain Research.

[48]  Y. Ben-Ari,et al.  Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy , 1985, Neuroscience.

[49]  R S Fisher,et al.  Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  R. Miles,et al.  Single neurones can initiate synchronized population discharge in the hippocampus , 1983, Nature.

[51]  G. Westbrook,et al.  Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity , 1983, Brain Research.

[52]  C. Cotman,et al.  The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography , 1982, Brain Research.

[53]  Nadler Jv Kainic acid as a tool for the study of temporal lobe epilepsy , 1981 .

[54]  S. Deadwyler,et al.  Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice , 1981, Brain Research.

[55]  J. Nadler Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. , 1981, Life sciences.

[56]  C. Cotman,et al.  Loss and reacquisition of hippocampal synapses after selective destruction of CA3–CA4 afferents with kainic acid , 1980, Brain Research.