The High-temperature Behaviour of PuPO4 Monazite and Some Other Related Compounds

[1]  A. Navrotsky,et al.  Thermodynamic properties of CaTh(PO4)2 synthetic cheralite , 2008 .

[2]  E. Vance,et al.  Plutonium in monazite and brabantite: Diffuse reflectance spectroscopy study , 2008 .

[3]  D. Bregiroux,et al.  Solid-state synthesis of monazite-type compounds containing tetravalent elements. , 2007, Inorganic chemistry.

[4]  R. Konings,et al.  The low-temperature heat capacity of (Pu0.1La0.9)PO4 , 2007 .

[5]  D. Bregiroux,et al.  Plutonium and americium monazite materials: Solid state synthesis and X-ray diffraction study , 2007 .

[6]  C. Taylor,et al.  Radiometric studies of mercury loss from fungicidal paints. 1. Loss of phenyl mercuric acetate , 2007 .

[7]  B. Nait‐Ali,et al.  Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln = La to Gd) , 2007 .

[8]  B. Glorieux,et al.  Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage , 2006 .

[9]  O. Beneš,et al.  The high-temperature heat capacity of LnPO4 (Ln = La, Ce, Gd) by drop calorimetry , 2006 .

[10]  T. Advocat,et al.  Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment , 2006 .

[11]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[12]  R. Konings,et al.  Low temperature heat capacity of PuPO4 , 2005 .

[13]  Rodney C. Ewing,et al.  Plutonium and “minor” actinides: safe sequestration , 2005 .

[14]  A. K. Tyagi,et al.  Thermal expansion of ThO2-2, 4 and 6 wt.% UO2 by HT-XRD , 2004 .

[15]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[16]  M. Yagovkina,et al.  Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238 , 2004 .

[17]  D. Avignant,et al.  X-ray diffraction study of brabantite–monazite solid solutions , 2002 .

[18]  T. Advocat,et al.  New conditionings for separated long-lived radionuclides , 2002 .

[19]  R C Ewing,et al.  Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Matzke,et al.  Thermophysical property measurements and ion-implantation studies on CePO4 , 1998 .

[21]  R. Podor,et al.  Experimental study of Th-bearing LaPO4 (780 ℃, 200 MPa): Implications for monazite and actinide orthophosphate stability , 1997 .

[22]  R. Ewing,et al.  Ion beam induced amorphization of monazite , 1996 .

[23]  R. Reeber,et al.  Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .

[24]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[25]  J. Fuger,et al.  Transuranium elements : a half century , 1992 .

[26]  C. Musikas,et al.  Monazite-like phases containing transuranium elements (neptunium and plutonium) , 1988 .

[27]  C. Musikas,et al.  Crystallochemical properties of transuranium phosphates , 1986 .

[28]  R. Haire,et al.  Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV) , 1984 .

[29]  G. Mccarthy,et al.  Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal , 1978 .

[30]  Robert M. Hazen,et al.  Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase , 1976 .

[31]  C. Bjorklund The Preparation of PuP2O7and PuPO41 , 1957 .