The High-temperature Behaviour of PuPO4 Monazite and Some Other Related Compounds
暂无分享,去创建一个
[1] A. Navrotsky,et al. Thermodynamic properties of CaTh(PO4)2 synthetic cheralite , 2008 .
[2] E. Vance,et al. Plutonium in monazite and brabantite: Diffuse reflectance spectroscopy study , 2008 .
[3] D. Bregiroux,et al. Solid-state synthesis of monazite-type compounds containing tetravalent elements. , 2007, Inorganic chemistry.
[4] R. Konings,et al. The low-temperature heat capacity of (Pu0.1La0.9)PO4 , 2007 .
[5] D. Bregiroux,et al. Plutonium and americium monazite materials: Solid state synthesis and X-ray diffraction study , 2007 .
[6] C. Taylor,et al. Radiometric studies of mercury loss from fungicidal paints. 1. Loss of phenyl mercuric acetate , 2007 .
[7] B. Nait‐Ali,et al. Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln = La to Gd) , 2007 .
[8] B. Glorieux,et al. Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage , 2006 .
[9] O. Beneš,et al. The high-temperature heat capacity of LnPO4 (Ln = La, Ce, Gd) by drop calorimetry , 2006 .
[10] T. Advocat,et al. Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment , 2006 .
[11] Lester R. Morss,et al. The chemistry of the actinide and transactinide elements , 2006 .
[12] R. Konings,et al. Low temperature heat capacity of PuPO4 , 2005 .
[13] Rodney C. Ewing,et al. Plutonium and “minor” actinides: safe sequestration , 2005 .
[14] A. K. Tyagi,et al. Thermal expansion of ThO2-2, 4 and 6 wt.% UO2 by HT-XRD , 2004 .
[15] Jie Lian,et al. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .
[16] M. Yagovkina,et al. Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238 , 2004 .
[17] D. Avignant,et al. X-ray diffraction study of brabantite–monazite solid solutions , 2002 .
[18] T. Advocat,et al. New conditionings for separated long-lived radionuclides , 2002 .
[19] R C Ewing,et al. Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[20] H. Matzke,et al. Thermophysical property measurements and ion-implantation studies on CePO4 , 1998 .
[21] R. Podor,et al. Experimental study of Th-bearing LaPO4 (780 ℃, 200 MPa): Implications for monazite and actinide orthophosphate stability , 1997 .
[22] R. Ewing,et al. Ion beam induced amorphization of monazite , 1996 .
[23] R. Reeber,et al. Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .
[24] John M. Hughes,et al. Crystal chemistry of the monazite and xenotime structures , 1995 .
[25] J. Fuger,et al. Transuranium elements : a half century , 1992 .
[26] C. Musikas,et al. Monazite-like phases containing transuranium elements (neptunium and plutonium) , 1988 .
[27] C. Musikas,et al. Crystallochemical properties of transuranium phosphates , 1986 .
[28] R. Haire,et al. Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV) , 1984 .
[29] G. Mccarthy,et al. Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal , 1978 .
[30] Robert M. Hazen,et al. Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase , 1976 .
[31] C. Bjorklund. The Preparation of PuP2O7and PuPO41 , 1957 .