Penggunaan Histogram dari Koefisien Aproksimasi Wavelet untuk Deteksi Cacat Tekstil
暂无分享,去创建一个
Generally, textile defect inspection at textile industry is still conducted manually by human. This approach is susceptible to errors and tends to be inconsistent due to fatigue and inattentiveness. To guarantee the consistency and inspection quality, an automatic defect detection system is required. This research proposes the use of histograms generated from two-level wavelet’s approximation coefficients as features to detect textile defects. The Euclidian distance that is calculated between feature of reference textile (non-defective textile) and feature of defective one is used as an evaluation parameter. If the Euclidian distances of the features of textile images are higher than a predetermined threshold, the textiles are determined as defective ones, and vice versa. Simulations are conducted using four groups of textile defects. It turns out that the proposed method can achieve 100% detection rate for textile group with ink-spot and textile group with holes. Keywords : Wavelet coefficient histogram , Euclidean distance , Textile de fect, industrial textiles, Image features Abstrak Pada industri tekstil, cacat produksi umumnya masih diperiksa secara manual oleh manusia. Pemeriksaan secara manual rentan terhadap kesalahan dan kurang konsisten, karena sifat manusia yang dapat lelah, lupa dan lain sebagainya. Untuk menjamin konsistensi dan kualitas pemeriksaan cacat kain, sebuah sistem deteksi otomatis perlu ada. Penelitian ini mengusulkan penggunaan histogram dari koefisien aproksimasi wavelet dua tingkat sebagai fitur untuk deteksi cacat tekstil. Jarak Euclidian yang dihitung diantara fitur tekstil citra referensi (berasal dari citra tidak cacat) dengan fitur tesktil citra cacat digunakan sebagai parameter evaluasi. Jika jarak Euclidian dari fitur suatu citra tekstil berada di atas nilai ambang yang telah ditentukan sebelumnya, citra tersebut dinyatakan cacat, dan sebaliknya. Penelitian dilaksanakan dengan menjalankan simulasi deteksi cacat tekstil, menggunakan empat kelompok cacat tekstil yang berbeda. Ditemukan bahwa metode usulan mencapai tingkat kebenaran deteksi sebesar 100% untuk citra kelompok cacat tinta dan kelompok cacat lubang. Kata Kunci : Histogram k oefisien w avele t, Jarak Euclidean , Cacat tekstil, Industri tekstil, F itur citra