Towards an efficient numerical simulation of complex 3D knee joint motion

We present a time-dependent finite element model of the human knee joint of full 3D geometric complexity together with advanced numerical algorithms needed for its simulation. The model comprises bones, cartilage and the major ligaments, while patella and menisci are still missing. Bones are modeled by linear elastic materials, cartilage by linear viscoelastic materials, and ligaments by one-dimensional nonlinear Cosserat rods. In order to capture the dynamical contact problems correctly, we solve the full PDEs of elasticity with strict contact inequalities. The spatio-temporal discretization follows a time layers approach (first time, then space discretization). For the time discretization of the elastic and viscoelastic parts we use a new contact-stabilized Newmark method, while for the Cosserat rods we choose an energy-momentum method. For the space discretization, we use linear finite elements for the elastic and viscoelastic parts and novel geodesic finite elements for the Cosserat rods. The coupled system is solved by a Dirichlet–Neumann method. The large algebraic systems of the bone–cartilage contact problems are solved efficiently by the truncated non-smooth Newton multigrid method.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[3]  S. Antman Nonlinear problems of elasticity , 1994 .

[4]  Peter Deuflhard,et al.  Adaptive timestep control for the contact-stabilized Newmark method , 2011, Numerische Mathematik.

[5]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[6]  E. Abdel-Rahman,et al.  A two-dimensional dynamic anatomical model of the human knee joint. , 1993, Journal of biomechanical engineering.

[7]  Peter Deuflhard,et al.  A Perturbation Result for Dynamical Contact Problems , 2009 .

[8]  R Huiskes,et al.  Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. , 2004, Journal of biomechanics.

[9]  Udo Nackenhorst,et al.  Computational methods for studies on the biomechanics of bones , 2006 .

[10]  Oliver Sander Coupling Geometrically Exact Cosserat Rods and Linear Elastic Continua , 2013, Domain Decomposition Methods in Science and Engineering XX.

[11]  Oliver Sander,et al.  Energy Minimizers of the Coupling of a Cosserat Rod to an Elastic Continuum , 2012 .

[12]  Peter Deuflhard,et al.  A contact‐stabilized Newmark method for dynamical contact problems , 2008 .

[13]  Frank Leymann,et al.  Bone remodelling: A combined biomechanical and systems‐biological challenge , 2011 .

[14]  R. Krause,et al.  Automatic construction of boundary parametrizations for geometric multigrid solvers , 2006 .

[15]  L Blankevoort,et al.  Ligament-bone interaction in a three-dimensional model of the knee. , 1991, Journal of biomechanical engineering.

[16]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[17]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[18]  J A Weiss,et al.  Computational modeling of ligament mechanics. , 2001, Critical reviews in biomedical engineering.

[19]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[20]  S J Piazza,et al.  Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. , 2001, Journal of biomechanical engineering.

[21]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[22]  Jiang Yao,et al.  Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics. , 2008, Journal of biomechanics.

[23]  M O Heller,et al.  A new model to predict in vivo human knee kinematics under physiological-like muscle activation. , 2007, Journal of biomechanics.

[24]  Oliver Sander,et al.  Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems , 2009 .

[25]  Ralf Kornhuber,et al.  A monotone multigrid solver for two body contact problems in biomechanics , 2007 .

[26]  W M Lai,et al.  A triphasic theory for the swelling and deformation behaviors of articular cartilage. , 1991, Journal of biomechanical engineering.

[27]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[28]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[29]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[30]  Oliver Sander,et al.  Infrastructure for the Coupling of Dune Grids , 2010 .

[31]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[32]  Corinna Klapproth,et al.  Adaptive numerical integration of dynamical contact problems , 2011 .

[33]  David E. Stewart,et al.  Dynamic frictionless contact in linear viscoelasticity , 2008 .

[34]  Peter Deuflhard,et al.  Consistency results on Newmark methods for dynamical contact problems , 2010, Numerische Mathematik.

[35]  Oliver Sander,et al.  Geodesic finite elements for Cosserat rods , 2009 .

[36]  Johannes Sobotta,et al.  Sobotta Atlas der Anatomie des Menschen , 1988 .

[37]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[38]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[39]  G. Truskey,et al.  Hemodynamic parameters and early intimal thickening in branching blood vessels. , 2001, Critical reviews in biomedical engineering.

[40]  M. Hull,et al.  A finite element model of the human knee joint for the study of tibio-femoral contact. , 2002, Journal of biomechanical engineering.

[41]  Erik Fosse,et al.  «The Visible Human Project» – et etisk dilemma , 2009 .

[42]  Oliver Sander,et al.  The PSurface library , 2011, Comput. Vis. Sci..

[43]  Jorge Ambrósio,et al.  Development of a planar multibody model of the human knee joint , 2010 .

[44]  S. McLean,et al.  Development and validation of a 3-D model to predict knee joint loading during dynamic movement. , 2003, Journal of biomechanical engineering.

[45]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[46]  Benjamin J Fregly,et al.  Multibody dynamic simulation of knee contact mechanics. , 2004, Medical engineering & physics.

[47]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[48]  T. van Eijden,et al.  A mathematical model of the patellofemoral joint. , 1986, Journal of biomechanics.

[49]  Ralph Müller,et al.  A scalable multi‐level preconditioner for matrix‐free µ‐finite element analysis of human bone structures , 2008 .

[50]  R. Spilker,et al.  Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation. , 1994, Journal of biomechanical engineering.

[51]  Ralf Kornhuber,et al.  Multigrid Methods for Obstacle Problems , 2008 .

[52]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[53]  V C Mow,et al.  The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. , 2001, Journal of biomechanical engineering.

[54]  W. Han,et al.  Contact problems in elasticity , 2002 .

[55]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[56]  Eric Schechter,et al.  Handbook of Analysis and Its Foundations , 1996 .

[57]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[58]  J M T Penrose,et al.  Development of An Accurate Three-dimensional Finite Element Knee Model , 2002, Computer methods in biomechanics and biomedical engineering.

[59]  Peter Deuflhard,et al.  Adaptive Numerical Solution of PDEs , 2012 .

[60]  Friedrich Paulsen,et al.  Sobotta, Atlas der Anatomie des Menschen , 2013 .

[61]  George Sanger,et al.  Structure and Mechanics , 1991 .

[62]  Andreas Dedner,et al.  A Generic Grid Interface for Adaptive and Parallel Scientific Computing. Part II: Implementation and Tests in DUNE , 2007 .

[63]  Oliver Sander,et al.  Multidimensional coupling in a human knee model , 2008 .

[64]  R Huiskes,et al.  The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. , 2005, Medical engineering & physics.