Locations of peculiar supernovae as a diagnostic of their origins

We put constraints on the properties of the progenitors of peculiar calcium-rich transients using the distribution of locations within their host galaxies. We confirm that this class of transients do not follow the galaxy stellar mass profile and are more likely to be found in remote locations of their apparent hosts. We test the hypothesis that these transients are from low metallicity progenitors by comparing their spatial distributions with the predictions of self-consistent cosmological simulations that include star formation and chemical enrichment. We find that while metal-poor stars and our transient sample show a consistent preference for large offsets, metallicity alone cannot explain the extreme cases. Invoking a lower age limit on the progenitor helps to improve the match, indicating these events may result from a very old metal-poor population. We also investigate the radial distribution of globular cluster systems, and show that they too are consistent with the class of calcium-rich transients. Because photometric upper limits exist for globular clusters for some members of the class, a production mechanism related to the dense environment of globular clusters is not favoured for the calcium-rich events. However the methods developed in this paper may be used in the future to constrain the effects of low metallicity on radially distant core-collapse events or help establish a correlation with globular clusters for other classes of peculiar explosions.

[1]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[2]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[3]  W. Hillebrandt,et al.  2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs , 2011, 1111.2117.

[4]  P. Zinn,et al.  Supernovae without host galaxies? Hypervelocity stars in foreign galaxies , 2011, 1109.4717.

[5]  Rollin C. Thomas,et al.  PTF10ops – a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere , 2011, 1108.0416.

[6]  K. Nomoto,et al.  CHEMICAL ENRICHMENT IN THE CARBON-ENHANCED DAMPED Lyα SYSTEM BY POPULATION III SUPERNOVAE , 2011, 1101.1227.

[7]  M. Sullivan,et al.  THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav , 2011, 1103.1797.

[8]  J. Neill,et al.  THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz , 2010, 1012.0570.

[9]  J. Truran,et al.  HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E , 2010, 1009.3829.

[10]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[11]  Duncan A. Forbes,et al.  Early-type galaxies at large galactocentric radii: II. Metallicity gradients and the [Z/H]-mass, [α/Fe]-mass relations , 2010, 1006.1698.

[12]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[13]  W. Hillebrandt,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2009, Nature.

[14]  E. Pian,et al.  A massive star origin for an unusual helium-rich supernova in an elliptical galaxy , 2009, Nature.

[15]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[16]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[17]  D. Kasen,et al.  COLLISIONS OF WHITE DWARFS AS A NEW PROGENITOR CHANNEL FOR TYPE Ia SUPERNOVAE , 2009, 0907.3196.

[18]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[19]  L. Bildsten,et al.  GLOBULAR CLUSTERS AS TESTBEDS FOR TYPE Ia SUPERNOVAE , 2009, 0903.1104.

[20]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[21]  K. Schawinski,et al.  The radial distribution of Type Ia supernovae in early-type galaxies: implications for progenitor scenarios , 2008, 0804.4690.

[22]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[23]  B. Miller,et al.  The Globular Cluster Luminosity Function and Specific Frequency in Dwarf Elliptical Galaxies , 2007, 0708.2511.

[24]  Sung-Chul Yoon,et al.  Remnant evolution after a carbon–oxygen white dwarf merger , 2007, 0704.0297.

[25]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[26]  S. White,et al.  Simulations of Cosmic Chemical Enrichment , 2006, Proceedings of the International Astronomical Union.

[27]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[28]  J. Strader,et al.  Extragalactic Globular Clusters and Galaxy Formation , 2006, astro-ph/0602601.

[29]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[30]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[31]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[32]  A. Filippenko,et al.  A Search for Core‐Collapse Supernova Progenitors in Hubble Space Telescope Images , 2002, astro-ph/0210347.

[33]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[34]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[35]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[36]  D. McLaughlin Binding Energy and the Fundamental Plane of Globular Clusters , 2000, astro-ph/0002086.

[37]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[38]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[39]  C. Carollo,et al.  Ellipticals with Kinematically--Distinct Cores: WFPC2 Imaging of Globular Clusters , 1996, astro-ph/9604146.

[40]  Marcia J. Rieke,et al.  Tracing the stellar mass in M51 , 1993 .

[41]  M. Phillips,et al.  THE LIGHT CURVE OF THE PLATEAU TYPE II SN 1983K , 1990 .

[42]  W. Harris Globular clusters in galaxies beyond the local group. V. The giant ellipticals reconsidered. , 1986 .

[43]  M. Phillips,et al.  The supernova 1983k in NGC 4699 : clues to the nature of type II progenitors. , 1985 .

[44]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .