Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor

The delay time distribution (DTD) of type Ia supernovae (SNe Ia) from star formation is an important clue to reveal the still unknown progenitor system of SNe Ia. Here we report on a measurement of the SN Ia DTD in a delay time range of t_Ia = 0.1-8.0 Gyr by using the faint variable objects detected in the Subaru/XMM-Newton Deep Survey (SXDS) down to i' ~ 25.5. We select 65 SN candidates showing significant spatial offset from nuclei of the host galaxies having old stellar population at z ~ 0.4-1.2, out of more than 1,000 SXDS variable objects. Although spectroscopic type classification is not available for these, we quantitatively demonstrate that more than ~80% of these should be SNe Ia. The DTD is derived using the stellar age estimates of the old galaxies based on 9 band photometries from optical to mid-infrared wavelength. Combined with the observed SN Ia rate in elliptical galaxies at the local universe, the DTD in t_Ia ~ 0.1-10 Gyr is well described by a featureless power-law as f_D(t_Ia) \propto t_Ia^{-1}. The derived DTD is in excellent agreement with the generic prediction of the double-degenerate scenario, giving a strong support to this scenario. In the single-degenerate (SD) scenario, although predictions by simple analytic formulations have broad DTD shapes that are similar to the observation, DTD shapes calculated by more detailed binary population synthesis tend to have strong peaks at characteristic time scales, which do not fit the observation. This result thus indicates either that the SD channel is not the major contributor to SNe Ia in old stellar population, or that improvement of binary population synthesis theory is required. Various sources of systematic uncertainties are examined and tested, but our main conclusions are not affected significantly.

[1]  I. Hook,et al.  Accepted for publication in The Astrophysical Journal LPNHE 02-02 The distant Type Ia supernova rate , 2002 .

[2]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[3]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[4]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[5]  The galactic evolution of the supernova rates , 2003, astro-ph/0305462.

[6]  S. Jha,et al.  Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity , 2008, 0805.4360.

[7]  Toru Yamada,et al.  The Number Density of Old Passively Evolving Galaxies at z = 1 in the Subaru/XMM-Newton Deep Survey Field , 2005, astro-ph/0508594.

[8]  N. Yasuda,et al.  Implications for Galaxy Evolution from Cosmic Evolution of the Supernova Rate Density , 2008, 0801.2194.

[9]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[10]  Vienna,et al.  A new formulation of the Type Ia supernova rate and its consequences on galactic chemical evolution , 2006, astro-ph/0607504.

[11]  K. Nomoto,et al.  to appear in the Astrophysical Journal, Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DELAY TIME DISTRIBUTION OF TYPE Ia SUPERNOVAE AND THE SINGLE DEGENERATE MODEL , 2022 .

[12]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[13]  T. Murphy,et al.  Properties of Luminous Red Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611053.

[14]  G. Nelemans,et al.  Limits on the X-ray and optical luminosity of the progenitor of the type Ia supernova 2007sr , 2008, 0802.2239.

[15]  F. Matteucci,et al.  On the Typical Timescale for the Chemical Enrichment from Type Ia Supernovae in Galaxies , 2001, astro-ph/0105074.

[16]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[17]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[18]  European Southern Observatory,et al.  Why Are Radio Galaxies Prolific Producers of Type Ia Supernovae? , 2005, astro-ph/0504087.

[19]  Adam G. Riess,et al.  HIGH-REDSHIFT SUPERNOVA RATES , 2004 .

[20]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[21]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[22]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.

[23]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[24]  Sung-Chul Yoon,et al.  Remnant evolution after a carbon–oxygen white dwarf merger , 2007, 0704.0297.

[25]  C. Kobayashi,et al.  Gradients of Absorption-Line Strengths in Elliptical Galaxies , 1999, astro-ph/9907091.

[26]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[27]  J. Tonry,et al.  The Rate of Type Ia Supernovae at High Redshift , 2005, astro-ph/0509655.

[28]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[29]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[30]  H. Abt Normal and abnormal binary frequencies , 1983 .

[31]  Mamoru Doi,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey , 2007, 0712.3108.

[32]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[33]  A CLOSE BINARY NUCLEUS IN THE MOST OXYGEN-POOR PLANETARY NEBULA PN G135.9+55.9 , 2004, astro-ph/0407518.

[34]  Dan Maoz,et al.  The redshift distribution of type Ia supernovae: constraints on progenitors and cosmic star formation history , 2004 .

[35]  S. Smartt,et al.  The binary progenitor of Tycho Brahe's 1572 supernova , 2004, Nature.

[36]  K. Schawinski,et al.  The radial distribution of Type Ia supernovae in early-type galaxies: implications for progenitor scenarios , 2008, 0804.4690.

[37]  P. Berlind,et al.  Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae , 2005 .

[38]  Progenitors of type Ia supernovae: Binary stars with white dwarf companions , 2007, astro-ph/0703415.

[39]  G. Nelemans,et al.  On the detection of the progenitor of the type Ia supernova 2007on , 2008, 0802.2097.

[40]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[41]  G. Blanc,et al.  Supernova progenitors and iron density evolution from SN rate evolution measurements , 2008, 0803.3793.

[42]  C. Wolf,et al.  Constraints on Type Ia supernova progenitor time delays from high- z supernovae and the star formation history , 2006, astro-ph/0601454.

[43]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[44]  M. Zombeck Handbook of Space Astronomy and Astrophysics , 1982 .

[45]  K. Nomoto,et al.  THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.

[46]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[47]  J. Wheeler Supernovae and Gamma-Ray Bursts , 2000 .

[48]  K. Nomoto,et al.  Young and Massive Binary Progenitors of Type Ia Supernovae and Their Circumstellar Matter , 2007, 0710.0319.

[49]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[50]  M. Livio,et al.  Type Ia Supernovae: An Examination of Potential Progenitors and the Redshift Distribution , 1997, astro-ph/9711201.

[51]  The hot subdwarf B + white dwarf binary KPD 1930+2752 A supernova type Ia progenitor candidate ,,, † , 2006, astro-ph/0612532.

[52]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[53]  P. Podsiadlowski,et al.  The single-degenerate channel for the progenitors of Type Ia supernovae , 2003, astro-ph/0309618.

[54]  A. Heavens,et al.  Evidence of short-lived SN Ia progenitors , 2007, 0707.1328.

[55]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[56]  L. Pasquini,et al.  Upper limit for circumstellar gas around the type Ia SN 2000cx , 2007, 0708.3698.

[57]  A. Heavens,et al.  The Ages, Metallicities, and Star Formation Histories of Early-Type Galaxies in the SDSS , 2006, astro-ph/0610724.

[58]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[59]  A. Tornambe',et al.  Carbon-Oxygen White Dwarf Accreting CO-Rich Matter. II. Self-Regulating Accretion Process up to the Explosive Stage , 2003 .

[60]  J. Hughes,et al.  Are the Models for Type Ia Supernova Progenitors Consistent with the Properties of Supernova Remnants? , 2007, astro-ph/0703321.

[61]  M. Doi,et al.  Searching for a Companion Star of Tycho's Type Ia Supernova with Optical Spectroscopic Observations , 2006, 0706.3259.

[62]  Matthew Joseph Griffin,et al.  First Insights into the Spitzer Wide-Area Infrared Extragalactic Legacy Survey (SWIRE) Galaxy Populations , 2004 .

[63]  A. Renzini,et al.  Rates, progenitors and cosmic mix of Type Ia supernovae , 2008, 0805.1512.

[64]  Puragra Guhathakurta,et al.  Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS) , 2007, 0711.0808.

[65]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[66]  Mamoru Doi,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). VI. Properties of Active Galactic Nuclei Selected by Optical Variability , 2007, 0712.3106.

[67]  Origin of color gradients in elliptical galaxies , 2000, astro-ph/0001174.

[68]  L. Greggio The rates of type Ia supernovae - I. Analytical formulations , 2005, astro-ph/0504376.

[69]  M. G. Rawlings,et al.  The United Kingdom Infrared Telescope Infrared Deep Sky Survey First Data Release , 2007 .

[70]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[71]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[72]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[73]  Douglas C. Leonard,et al.  Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra , 2006, 0710.3166.

[74]  Dan Maoz,et al.  The type Ia supernova rate in z ⩽ 1 galaxy clusters: implications for progenitors and the source of cluster iron , 2003, astro-ph/0309797.

[75]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[76]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000 .

[77]  L. R. Yungelson,et al.  Supernova Rates: A Cosmic History , 2000 .

[78]  Type Ia supernovae: their origin and possible applications in cosmology. , 1997, Science.

[79]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[80]  G. Nelemans,et al.  Discovery of the progenitor of the type Ia supernova 2007on , 2008, Nature.

[81]  NEW CONSTRAINTS ON TYPE Ia SUPERNOVA PROGENITOR MODELS , 2005, astro-ph/0502196.

[82]  C. Prieto,et al.  Constraints on Circumstellar Material around the Type Ia Supernova 2007af , 2007, 0709.1472.

[83]  T. Totani,et al.  Deciphering the Cosmic Star Formation History and the Nature of Type Ia Supernovae with Future Supernova Surveys , 2005, astro-ph/0505312.