Compatibility Challenges for High-ĸ Materials Integration into CMOS Technology

In addition to meeting the formidable challenges of replacing the nearly perfect SiO 2 dielectric, a new dielectric ideally needs to replace SiO 2 with minimal rearrangement of the complementary metal oxide semiconductor (CMOS) process flow. In this article, we outline the essential materials-integration issues that arise out of the technical requirements for minimizing changes to future process technologies. These include interfacial layer formation, film microstructure, deposition technologies, and electrical performance challenges such as trapped charge and the mobility degradation associated with any replacement material. Integration of the high-κ materials currently under consideration presents a significant challenge for materials scientists and engineers in industry and academia.

[1]  S. Campbell,et al.  Group IVB metal oxides high permittivity gate insulators deposited from anhydrous metal nitrates , 2001 .

[2]  Dim-Lee Kwong,et al.  Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) , 2001 .

[3]  G. Parsons,et al.  Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics , 2000 .

[4]  J. Kwo,et al.  Interface reactions of high-κ Y2O3 gate oxides with Si , 2001 .

[5]  E. Cartier,et al.  Formation of a stratified lanthanum silicate dielectric by reaction with Si(001) , 2001 .

[6]  Eduard A. Cartier,et al.  Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics , 2000 .

[7]  Yuan Taur,et al.  Defect generation in 3.5 nm silicon dioxide films , 1994 .

[8]  E. Cartier,et al.  Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering , 2001 .

[9]  L. Ragnarsson,et al.  Electrical characterization of Al2O3 n-channel MOSFETs with aluminum gates , 2001, IEEE Electron Device Letters.

[10]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[11]  R. Wallace,et al.  Hafnium and zirconium silicates for advanced gate dielectrics , 2000 .

[12]  James Stasiak,et al.  Trap creation in silicon dioxide produced by hot electrons , 1989 .

[13]  N. Miyata,et al.  Study of ultrathin Al2O3/Si(001) interfaces by using scanning reflection electron microscopy and x-ray photoelectron spectroscopy , 2001 .

[14]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[15]  Eduard A. Cartier,et al.  High-resolution depth profiling in ultrathin Al2O3 films on Si , 2000 .

[16]  Eduard A. Cartier,et al.  Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition , 2001 .

[17]  Angus I. Kingon,et al.  High temperature stability in lanthanum and zirconia-based gate dielectrics , 2001 .

[18]  Jack C. Lee,et al.  Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application , 2000 .

[19]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[20]  E. Cartier,et al.  Robustness of ultrathin aluminum oxide dielectrics on Si(001) , 2001 .

[21]  Heung-Jae Cho,et al.  Boron penetration in p+polycrystalline-Si/Al2O3/Si metal–oxide–semiconductor system , 2000 .