Cation-based resistance change memory

A potential replacement for current charge-based memory technologies in the nanoscale device regime is a form of resistance change memory (RRAM) which utilizes cation transport and redox reactions to form and remove a conducting filament in a metal–electrolyte/insulator–metal (MEM/MIM) structure. A variety of oxide and higher chalcogenide materials have been used as the silver or copper ion transport medium, yielding devices with similar switching characteristics. The technology has been the subject of extensive research in academia and industry and is in an advanced stage of commercialization but there remain a number of fundamental questions regarding the fine details of device operation and the connection with electrochemical theory at the nanoscale. This review surveys some of the published research in the area and considers the topics of ion-conducting materials, rate limiting steps during device operation and filament stability. Device performance and modelling are also presented and discussed.

[1]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[2]  A. Milchev,et al.  Atomistic theory of electrolytic nucleation: I , 1974 .

[3]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[4]  J. Werner Electronic Properties of Grain Boundaries , 1985 .

[5]  R. Waser Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics , 1995 .

[6]  E. Budevski,et al.  Electrochemical Phase Formation and Growth , 1996 .

[7]  D. Blom,et al.  Defect thermodynamics and electrical properties of nanocrystalline oxides: pure and doped CeO2 , 1997 .

[8]  S. Folling,et al.  Single-electron latching switches as nanoscale synapses , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[9]  Sangtae Kim,et al.  On the conductivity mechanism of nanocrystalline ceria , 2002 .

[10]  M. Kozicki,et al.  Silver incorporation in Ge-Se glasses used in programmable metallization cell devices , 2002 .

[11]  Haruo Tanaka,et al.  Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition , 2003 .

[12]  Sangtae Kim,et al.  Space charge conduction: Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria , 2003 .

[13]  Thomas H. Lee,et al.  512-Mb PROM with a three-dimensional array of diode/antifuse memory cells , 2003 .

[14]  M. Kozicki,et al.  Flow regulation in microchannels via electrical alteration of surface properties , 2003 .

[15]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[16]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[17]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[18]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[19]  Maria Mitkova,et al.  Crystallization effects in annealed thin Ge–Se films photodiffused with Ag , 2006 .

[20]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[21]  M. Kozicki,et al.  Mass transport in chalcogenide electrolyte films - materials and applications , 2006 .

[22]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[23]  Rainer Waser,et al.  On the origin of bistable resistive switching in metal organic charge transfer complex memory cells , 2007 .

[24]  N.E. Gilbert,et al.  An Embeddable Multilevel-Cell Solid Electrolyte Memory Array , 2007, IEEE Journal of Solid-State Circuits.

[25]  Electric switching and memory devices made from RbAg4I5 films , 2007 .

[26]  Maria Mitkova,et al.  Structure of copper-doped tungsten oxide films for solid-state memory , 2007 .

[27]  Jiang Yin,et al.  Resistive switching devices based on nanocrystalline solid electrolyte (AgI)0.5(AgPO3)0.5 , 2007 .

[28]  K. Aratani,et al.  A Novel Resistance Memory with High Scalability and Nanosecond Switching , 2007, 2007 IEEE International Electron Devices Meeting.

[29]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[30]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[31]  X. Liang,et al.  Resistive switching and memory effects of AgI thin film , 2007 .

[32]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[33]  B. Yang,et al.  Characterization of RbAg4I5 films prepared by pulsed laser deposition , 2008 .

[34]  M. Kozicki,et al.  In situ tuning of omnidirectional microelectromechanical-systems microphones to improve performance fit in hearing aids , 2008 .

[35]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[36]  P. Zhou,et al.  Resistive Memory Switching of $\hbox{Cu}_{x}\hbox{O}$ Films for a Nonvolatile Memory Application , 2008, IEEE Electron Device Letters.

[37]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[38]  R. Bruchhaus,et al.  Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells , 2009, IEEE Electron Device Letters.

[39]  S. J. van der Molen,et al.  Conductance switching in Ag2S devices fabricated by in situ sulfurization , 2009, Nanotechnology.

[40]  Michael Kund,et al.  Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results , 2009 .

[41]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[42]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[43]  Joachim Maier Thermodynamics of Nanosystems with a Special View to Charge Carriers , 2009 .

[44]  Rainer Waser,et al.  Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. , 2009, Physical chemistry chemical physics : PCCP.

[45]  J. Tour,et al.  Resistive switching in nanogap systems on SiO2 substrates. , 2009, Small.

[46]  Qi Liu,et al.  Multilevel resistive switching with ionic and metallic filaments , 2009 .

[47]  D. Ielmini,et al.  Voltage-Driven On–Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Electron Device Letters.

[48]  Wei Wang,et al.  Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device , 2009 .

[49]  M. Haemori,et al.  Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion , 2009 .

[50]  Qi Liu,et al.  Improvement of Resistive Switching Properties in $ \hbox{ZrO}_{2}$-Based ReRAM With Implanted Ti Ions , 2009, IEEE Electron Device Letters.

[51]  M. Kozicki,et al.  Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices , 2010 .

[52]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[53]  Takuro Tamura,et al.  Rate-Limiting Processes Determining the Switching Time in a Ag2S Atomic Switch , 2010 .

[54]  Michael N. Kozicki,et al.  Power and Energy Perspectives of Nonvolatile Memory Technologies , 2010, Proceedings of the IEEE.

[55]  Frederick T. Chen,et al.  Bipolar Resistive Switching Memory Using Cu Metallic Filament in Ge0.4Se0.6 Solid Electrolyte , 2010 .

[56]  Qi Liu,et al.  Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures , 2010 .

[57]  P. Gonon,et al.  Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes , 2010 .

[58]  Stephan Menzel,et al.  Memory Devices: Energy–Space–Time Tradeoffs , 2010, Proceedings of the IEEE.

[59]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[60]  Frederick T. Chen,et al.  Formation and instability of silver nanofilament in Ag-based programmable metallization cells. , 2010, ACS nano.

[61]  R. Waser,et al.  On the stochastic nature of resistive switching in Cu doped Ge0.3Se0.7 based memory devices , 2011 .

[62]  Yi Ma,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process , 2011 .

[63]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[64]  S. J. van der Molen,et al.  Bulk and surface nucleation processes in Ag2S conductance switches , 2011, 1108.5293.

[65]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[66]  Michael N. Kozicki,et al.  Inherent diode isolation in programmable metallization cell resistive memory elements , 2011 .

[67]  R. Cavin,et al.  Scaling limits of resistive memories , 2011, Nanotechnology.

[68]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[69]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[70]  Masakazu Aono,et al.  A Polymer‐Electrolyte‐Based Atomic Switch , 2011 .

[71]  Rainer Waser,et al.  Proton mobility in SiO 2 thin films and impact of hydrogen and humidity on the resistive switching effect , 2011 .

[72]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[73]  M. Kozicki,et al.  Low voltage cycling of programmable metallization cell memory devices , 2011, Nanotechnology.

[74]  Vivek Subramanian,et al.  A Detailed Study of the Forming Stage of an Electrochemical Resistive Switching Memory by KMC Simulation , 2011, IEEE Electron Device Letters.

[75]  P. Gonon,et al.  Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 , 2011 .

[76]  Michael N. Kozicki,et al.  One-dimensional model of the programming kinetics of conductive-bridge memory cells , 2011 .

[77]  Masakazu Aono,et al.  Switching kinetics of a Cu2S-based gap-type atomic switch , 2011, Nanotechnology.

[78]  A. Revcolevschi,et al.  Resistive Switching Phenomena in LixCoO2 Thin Films , 2011, Advanced materials.

[79]  Rainer Waser,et al.  Redox processes in silicon dioxide thin films using copper microelectrodes , 2011 .

[80]  M. Kozicki,et al.  Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)) , 2011 .

[81]  Masakazu Aono,et al.  Temperature effects on the switching kinetics of a Cu–Ta2O5-based atomic switch , 2011, Nanotechnology.

[82]  G. Micheli,et al.  Resistive Programmable Through-Silicon Vias for Reconfigurable 3-D Fabrics , 2012, IEEE Transactions on Nanotechnology.

[83]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[84]  S. Menzel,et al.  Simulation of multilevel switching in electrochemical metallization memory cells , 2012 .

[85]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[86]  R. Waser,et al.  Effects of Moisture on the Switching Characteristics of Oxide‐Based, Gapless‐Type Atomic Switches , 2012 .

[87]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[88]  Rainer Waser,et al.  Direct Observation of Charge Transfer in Solid Electrolyte for Electrochemical Metallization Memory , 2012, Advanced materials.

[89]  G. Fève,et al.  A coherent RC circuit , 2012, Reports on progress in physics. Physical Society.

[90]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[91]  D. Ielmini,et al.  Resistance Drift Model for Conductive-Bridge (CB) RAM by Filament Surface Relaxation , 2012, 2012 4th IEEE International Memory Workshop.

[92]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[93]  Record Resistance Ratio and Bipolar/Unipolar Resistive Switching Characteristics of Memory Device Using Germanium Oxide Solid Electrolyte , 2012 .

[94]  M. Morales‐Masis,et al.  Observing “quantized” conductance steps in silver sulfide: Two parallel resistive switching mechanisms , 2012 .

[95]  R. Waser,et al.  Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. , 2012, Nanoscale.

[96]  M. Kozicki,et al.  Effects of cooperative ionic motion on programming kinetics of conductive-bridge memory cells , 2012 .

[97]  Ilia Valov,et al.  Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories , 2013, Journal of Solid State Electrochemistry.

[98]  R. Waser,et al.  Response to "comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM". , 2013 .

[99]  Rainer Waser,et al.  Preparation and characterization of GeSx thin-films for resistive switching memories☆ , 2013 .