Morphological Characteristics of Tidal Creeks in the Central Coastal Region of Jiangsu, China, Using LiDAR

Tidal creeks are an important component of the intertidal zone and are essential for maintaining the balance between sedimentary processes and the hydrodynamic environment. A quantitative analysis of the morphological characteristics of tidal creeks is essential for understanding their processes of evolution and to evaluate the stability of tidal flats. This study describes the morphological characteristics of tidal creeks using a high-resolution airborne LiDAR DEM. The parameters include the number, order, length, width, depth, and width/depth ratio. The results show that the number and degree of development tidal creeks along the central coast of Jiangsu are higher than those in the radial sandbanks, and the mean width and length increase with the increasing tidal creek order. The number, length, and depth of tidal creeks in the salt marsh zone with well-developed vegetation are higher than those areas with little vegetation cover. The number of tidal creeks in the mid-upper intertidal zone is the largest, while the length and width of tidal creeks in the lower intertidal zone are the greatest. The differences in these characteristics are mainly related to the vegetation distribution, tidal flat width, and hydrodynamic conditions. Our findings potentially provide guidelines for coastal management and the evaluation of tidal flat stability.

[1]  Luis Dzul,et al.  Validation of a Methodology to Analyze the Morphological Parameters in Newly Created Tidal Channels Through a Video Monitoring System , 2019, Applied Sciences.

[2]  Tania Ruth Scott,et al.  Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry , 2006 .

[3]  Philip B. Williams,et al.  Hydraulic Geometry: A Geomorphic Design Tool for Tidal Marsh Channel Evolution in Wetland Restoration Projects , 2002 .

[4]  K. Dyer,et al.  The influence of bedforms on flow and sediment transport over intertidal mudflats , 2000 .

[5]  Giovanni Seminara,et al.  Laboratory observations of the morphodynamic evolution of tidal channels and tidal inlets , 2005 .

[6]  Joong-Sun Won,et al.  Tidal channel distribution in relation to surface sedimentary facies based on remotely sensed data , 2012, Geosciences Journal.

[7]  Uwe Soergel,et al.  Aspects of generating precise digital terrain models in the Wadden Sea from lidar–water classification and structure line extraction , 2008 .

[8]  Alessandro Cantelli,et al.  Geometric characteristics and evolution of a tidal channel network in experimental setting , 2011 .

[9]  S. Temmerman,et al.  Ecosystem-based coastal defence in the face of global change , 2013, Nature.

[10]  Shakeel Ahmed,et al.  Morphometric analysis of a watershed of South India using SRTM data and GIS , 2009 .

[11]  Chang Hwan Kim,et al.  Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS , 2010 .

[12]  V. Klemas,et al.  Beach Profiling and LIDAR Bathymetry: An Overview with Case Studies , 2011 .

[13]  Henry F. Lamb,et al.  Geomorphic change of saltmarsh tidal creek networks in the Dyfi Estuary, Wales , 1995 .

[14]  J. Hyyppä,et al.  Laser scanning applications in fluvial studies , 2011 .

[15]  M. Mallin,et al.  The importance of tidal creek ecosystems , 2004 .

[16]  A. Rinaldo,et al.  Tidal networks: 2. Watershed delineation and comparative network morphology , 1999 .

[17]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[18]  A. Rinaldo,et al.  Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps , 1999 .

[19]  A. D. Abrahams Channel Networks: A Geomorphological Perspective , 1984 .

[20]  D. Cairns,et al.  Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation , 2013 .

[21]  Raymond Torres,et al.  Geomorphic analysis of tidal creek networks , 2004 .

[22]  A. N. Strahler DYNAMIC BASIS OF GEOMORPHOLOGY , 1952 .

[23]  K. Pye,et al.  Morphological and Sedimentological Changes on an Artificially Nourished Beach, Lincolnshire, UK , 2004 .

[24]  Marco Marani,et al.  Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes , 2016 .

[25]  S. Bai,et al.  Terrestrial laserscanning of tidal flats—a case study in Jiangsu Province, China , 2013, Journal of Coastal Conservation.

[26]  S. Temmerman,et al.  Formation and evolution of a tidal channel network within a constructed tidal marsh , 2012 .

[27]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[28]  Igor V. Florinsky,et al.  Quantitative topographic method of fault morphology recognition , 1996 .

[29]  Charlotte E. L. Thompson,et al.  Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar , 2018 .

[30]  Luca Carniello,et al.  Experimental analysis of tidal network growth and development , 2010 .

[31]  S. Fagherazzi,et al.  The effect of bidirectional flow on tidal channel planforms , 2004 .

[32]  Z. Hughes Tidal Channels on Tidal Flats and Marshes , 2012 .

[33]  Peter M. J. Herman,et al.  Impacts of salt marsh plants on tidal channel initiation and inheritance , 2013 .

[34]  Crystal Schaaf,et al.  Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar , 2019, Remote. Sens..

[35]  Joanne C. White,et al.  Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .

[36]  Sagi Filin,et al.  Detection of gullies in roughly textured terrain using airborne laser scanning data , 2011 .

[37]  W. Hood Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA) , 2010 .

[38]  G. Coco,et al.  Analysis of the drainage density of experimental and modelled tidal networks , 2013 .

[39]  M. Stive,et al.  Morphodynamics of the Wadden Sea and its barrier island system , 2012 .

[40]  S. Fagherazzi,et al.  Salt marsh vegetation promotes efficient tidal channel networks , 2014, Nature Communications.

[41]  Ibon Galparsoro,et al.  Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery , 2008 .

[42]  Yongxue Liu,et al.  Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[43]  C. Woodroffe,et al.  Tidal estuary width convergence: Theory and form in North Australian estuaries , 2010 .

[44]  C. Hopkinson,et al.  A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta , 2015 .

[45]  G. Perillo,et al.  Biological-physical interactions in estuaries , 2009 .

[46]  Yongchao Liu,et al.  Seasonal and Intra-Annual Patterns of Sedimentary Evolution in Tidal Flats Impacted by Laver Cultivation along the Central Jiangsu Coast, China , 2019, Applied Sciences.

[47]  J. Poesen,et al.  Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology , 2009 .

[48]  Giovanni Coco,et al.  Morphodynamics of tidal networks: advances and challenges , 2013 .

[49]  A. D’Alpaos,et al.  A New Method for Automatic Definition of Tidal Creek Networks , 2018, Journal of Coastal Research.

[50]  M. L. Zeff Salt Marsh Tidal Channel Morphometry: Applications for Wetland Creation and Restoration , 1999 .

[51]  Manchun Li,et al.  Automated extraction of tidal creeks from airborne laser altimetry data , 2015 .

[52]  Manchun Li,et al.  Seasonal Pattern of Tidal-Flat Topography along the Jiangsu Middle Coast, China, Using HJ-1 Optical Images , 2013, Wetlands.

[53]  Yongxue Liu,et al.  Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China , 2018, International journal of environmental research and public health.

[54]  S. Temmerman,et al.  Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change , 2013 .

[55]  Marco Toffolon,et al.  How long are tidal channels? , 2009, Journal of Fluid Mechanics.

[56]  C. R. Trepte,et al.  Detection of pollution outflow from Mexico City using CALIPSO lidar measurements , 2015 .

[57]  A. Goudie Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth , 2013 .

[58]  David C. Mason,et al.  Extraction of tidal channel networks from airborne scanning laser altimetry , 2006 .

[59]  Andrea Rinaldo,et al.  On the drainage density of tidal networks , 2001 .

[60]  Xinqing Zou,et al.  Sediment dynamics in an offshore tidal channel in the southern Yellow Sea , 2014 .

[61]  Zhengbing Wang,et al.  Process-Based Morphodynamic Modeling of a Schematized Mudflat Dominated by a Long-Shore Tidal Current at the Central Jiangsu Coast, China , 2012 .

[62]  M. van der Wegen,et al.  Long‐term morphodynamic evolution of a tidal embayment using a two‐dimensional, process‐based model , 2008 .

[63]  Yasuyuki Shimizu,et al.  Modelling of the initiation and development of tidal creek networks , 2013 .

[64]  L. Tosi,et al.  Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy) , 2012 .

[65]  W. Hood A conceptual model of depositional, rather than erosional, tidal channel development in the rapidly prograding Skagit River Delta (Washington, USA) , 2006 .