Biomechanical evaluation of an allograft fixation system for ACL reconstruction

The purpose of this study was to compare the biomechanical stability, especially graft slippage of an allograft screw and a conventional interference screw for tibial implant fixation in ACL reconstruction. Twenty-four paired human proximal tibia specimens underwent ACL reconstruction, with the graft in one specimen of each pair fixed using the allograft screw and the other using the conventional interference screw. Specimens were subjected to cyclic tensile loading until failure. The two fixation methods did not show any statistical difference in load at graft slippage (p = 0.241) or estimated mean survival until slippage onset (p = 0.061). The ultimate load and the estimated mean survival until failure were higher for the interference screw (p = 0.04, and p = 0.018, respectively). Graft displacement at ultimate load reached values of up to 7.2 (interference screw) and 11.3 mm (allograft screw). The allograft screw for implant fixation in ACL reconstruction demonstrated comparable behavior in terms of graft slippage to the interference screw but underperformed in terms of ultimate load. However, the ultimate load, occurring at progressive graft slippage, may not be considered a direct indicator of clinical failure.

[1]  Lena Hirtler,et al.  On Measuring Implant Fixation Stability in ACL Reconstruction , 2021, Sensors.

[2]  I. Brčić,et al.  Incorporation of an Allogenic Cortical Bone Graft Following Arthrodesis of the First Metatarsophalangeal Joint in a Patient with Hallux Rigidus , 2021, Life.

[3]  W. Schimetta,et al.  The application of an allogeneic bone screw for osteosynthesis in hand and foot surgery: a case series , 2021, Archives of Orthopaedic and Trauma Surgery.

[4]  L. Kalish,et al.  Complications of Bioabsorbable Tibial Interference Screws After Anterior Cruciate Ligament Reconstruction in Pediatric and Adolescent Athletes , 2020, Orthopaedic journal of sports medicine.

[5]  C. Wijdicks,et al.  Adjustable‐length loop cortical button versus interference screw fixation in quadriceps tendon anterior cruciate ligament reconstruction – A biomechanical in vitro study , 2018, Clinical biomechanics.

[6]  C. Wijdicks,et al.  Adjustable- Versus Fixed-Loop Devices for Femoral Fixation in ACL Reconstruction: An In Vitro Full-Construct Biomechanical Study of Surgical Technique–Based Tibial Fixation and Graft Preparation , 2018, Orthopaedic journal of sports medicine.

[7]  R. Ostrander,et al.  Biomechanical Comparison of Fixed-Loop and Adjustable-Loop Cortical Suspensory Devices for Metaphyseal Femoral-Sided Soft Tissue Graft Fixation in Anatomic Anterior Cruciate Ligament Reconstruction Using a Porcine Model. , 2017, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[8]  Roald Bahr,et al.  Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture , 2016, British Journal of Sports Medicine.

[9]  William M. Browning,et al.  A Systematic Summary of Systematic Reviews on the Topic of the Anterior Cruciate Ligament , 2016, Orthopaedic journal of sports medicine.

[10]  R. Attal,et al.  Biomechanical Comparison of 2 Anterior Cruciate Ligament Graft Preparation Techniques for Tibial Fixation , 2015, The American journal of sports medicine.

[11]  N. Adachi,et al.  Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. , 2014, The Knee.

[12]  K. Markolf,et al.  ACL forces and knee kinematics produced by axial tibial compression during a passive flexion–extension cycle , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  R. LaPrade,et al.  Femoral Cortical Suspension Devices for Soft Tissue Anterior Cruciate Ligament Reconstruction , 2013, The American journal of sports medicine.

[14]  L. Bisson,et al.  Biomechanical comparison of femoral fixation devices for anterior cruciate ligament reconstruction using a novel testing method. , 2013, Clinical biomechanics.

[15]  L. Salmon,et al.  The outcome at 15 years of endoscopic anterior cruciate ligament reconstruction using hamstring tendon autograft for 'isolated' anterior cruciate ligament rupture. , 2012, The Journal of bone and joint surgery. British volume.

[16]  Darren M. Palathinkal,et al.  In vitro biomechanical testing of anterior cruciate ligament reconstruction: traditional versus physiologically relevant load analysis. , 2011, The Knee.

[17]  A. Amis,et al.  The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro , 2011, Knee Surgery, Sports Traumatology, Arthroscopy.

[18]  Mark D. Miller,et al.  A biomechanical comparison of the endobutton cl using transtibial drilling and endobutton direct using anteromedial arthroscopic drilling. , 2010, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[19]  Randal P. Morris,et al.  Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex versus the anterior cortex. , 2010, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[20]  F. Barber,et al.  Anterior cruciate ligament reconstruction using patellar tendon allograft: an age-dependent outcome evaluation. , 2010, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[21]  A. Speirs,et al.  Evaluation of a new femoral fixation device in a simulated anterior cruciate ligament reconstruction. , 2010, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[22]  M. Schofer,et al.  Comparison between bovine bone and titanium interference screws for implant fixation in ACL reconstruction: a biomechanical study , 2010, Archives of Orthopaedic and Trauma Surgery.

[23]  B. Lee,et al.  Comparative biomechanical study of the Ligament Plate® and other fixation devices in ACL reconstruction , 2009, International Orthopaedics.

[24]  C. Fink,et al.  Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. , 2009, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[25]  Leo A. Pinczewski,et al.  A 10-Year Comparison of Anterior Cruciate Ligament Reconstructions with Hamstring Tendon and Patellar Tendon Autograft , 2007 .

[26]  C. Fabbriciani,et al.  Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: a mechanical analysis in porcine knees , 2007, Knee Surgery, Sports Traumatology, Arthroscopy.

[27]  A. Weiler,et al.  Biodegradable Composite Implants , 2006, Sports medicine and arthroscopy review.

[28]  Giuseppe Milano,et al.  Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. , 2006, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[29]  Guoan Li,et al.  Comparison of the ACL and ACL graft forces before and after ACL reconstruction an in-vitro robotic investigation , 2006, Acta orthopaedica.

[30]  V. Musahl,et al.  ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-year clinical results , 2005, Knee Surgery, Sports Traumatology, Arthroscopy.

[31]  M. Hull,et al.  Foam-Reinforced Elderly Human Tibia Approximates Young Human Tibia Better than Porcine Tibia , 2004, The American journal of sports medicine.

[32]  Mika Vihavainen,et al.  The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction: Part II: Tibial Site * , 2003, The American journal of sports medicine.

[33]  D. Caborn,et al.  Effect of Screw Length on Bioabsorbable Interference Screw Fixation in a Tibial Bone Tunnel * , 2001, The American journal of sports medicine.

[34]  G. Lajtai,et al.  Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up. , 2001, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[35]  D. Caborn,et al.  Interference Screw Fixation Strength of a Quadrupled Hamstring Tendon Graft Is Directly Related to Bone Mineral Density and Insertion Torque , 2000, The American journal of sports medicine.

[36]  Charles H. Brown,et al.  Graft Fixation in Cruciate Ligament Reconstruction , 2000, The American journal of sports medicine.

[37]  A Leardini,et al.  Cruciate ligament forces in the human knee during rehabilitation exercises. , 2000, Clinical biomechanics.

[38]  H. Kohl,et al.  Cyclic Pull-Out Strength of Hamstring Tendon Graft Fixation with Soft Tissue Interference Screws , 1999, The American journal of sports medicine.

[39]  A. Amis,et al.  Comparative Pull-Out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction , 1999, The American journal of sports medicine.

[40]  W. H. Warden,et al.  Magnetic Resonance Imaging of Bioabsorbable Polylactic Acid Interference Screws During the First 2 Years After Anterior Cruciate Ligament Reconstruction , 1999 .

[41]  S. Woo,et al.  The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. , 1999, Journal of biomechanics.

[42]  M. Hull,et al.  Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts , 1999, The American journal of sports medicine.

[43]  L. Paulos,et al.  Is an anterior cruciate ligament reconstruction outcome age dependent? , 1996, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[44]  R. Peindl,et al.  Biomechanical comparison of hamstring tendon fixation devices for anterior cruciate ligament reconstruction: part 1. Five femoral devices. , 2015, American journal of orthopedics.

[45]  R. Peindl,et al.  Biomechanical comparison of hamstring tendon fixation devices for anterior cruciate ligament reconstruction: Part 2. Four tibial devices. , 2015, American journal of orthopedics.

[46]  A. Ferretti,et al.  Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft , 2010, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[47]  M. M. Malek,et al.  Arthroscopically assisted ACL reconstruction using central third patellar tendon autograft with press fit femoral fixation. , 1996, Instructional course lectures.