Rate of homogenization for fully-coupled McKean-Vlasov SDEs

. We consider a fully-coupled slow-fast system of McKean-Vlasov SDEs with full dependence on the slow and fast component and on the law of the slow component and derive convergence rates to its homogenized limit. We do not make periodicity assumptions, but we impose conditions on the fast motion to guarantee ergodicity. In the course of the proof we obtain related ergodic theorems and we gain results on the regularity of Poisson type of equations and of the associated Cauchy-Problem on the Wasserstein space that are of independent interest.

[1]  H. Qiao,et al.  Efficient filtering for multiscale McKean-Vlasov Stochastic differential equations , 2022, 2206.05037.

[2]  Xiaobin Sun,et al.  Well-posedness and averaging principle of McKean-Vlasov SPDEs driven by cylindrical α-stable process , 2022, Stochastic Analysis and Applications.

[3]  Fuke Wu,et al.  Poisson equation on Wasserstein space and diffusion approximations for McKean-Vlasov equation , 2022, 2203.12796.

[4]  K. Spiliopoulos,et al.  Moderate deviations for fully coupled multiscale weakly interacting particle systems , 2022, 2202.08403.

[5]  Panpan Ren,et al.  Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang’s Harnack inequality , 2021, Stochastic Processes and their Applications.

[6]  Peng Chen,et al.  Approximation to Stochastic Variance Reduced Gradient Langevin Dynamics by Stochastic Delay Differential Equations , 2021, Applied Mathematics & Optimization.

[7]  Large deviations for interacting multiscale particle systems. , 2020, 2011.03032.

[8]  L. Szpruch,et al.  Weak quantitative propagation of chaos via differential calculus on the space of measures , 2019, The Annals of Applied Probability.

[9]  D. Crisan,et al.  A Probabilistic Approach to Classical Solutions of the Master Equation for Large Population Equilibria , 2014, Memoirs of the American Mathematical Society.

[10]  Jie Xu,et al.  Strong Averaging Principle for Two-Time-Scale Stochastic McKean-Vlasov Equations , 2021, Applied Mathematics & Optimization.

[11]  Arnab Ganguly,et al.  Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics , 2021 .

[12]  G. Pavliotis,et al.  On the Diffusive-Mean Field Limit for Weakly Interacting Diffusions Exhibiting Phase Transitions , 2020, Archive for Rational Mechanics and Analysis.

[13]  M. Rockner,et al.  Strong convergence order for slow–fast McKean–Vlasov stochastic differential equations , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[14]  Noufel Frikha,et al.  From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDEs , 2019, Journal de Mathématiques Pures et Appliquées.

[15]  M. Rockner,et al.  Diffusion approximation for fully coupled stochastic differential equations , 2020, 2008.04817.

[16]  Feng-Yu Wang,et al.  Derivative estimates on distributions of McKean-Vlasov SDEs , 2020, 2006.16731.

[17]  Alvin Tse Higher order regularity of nonlinear Fokker-Planck PDEs with respect to the measure component , 2019, 1906.09839.

[18]  W. Stannat,et al.  Weak solutions to Vlasov–McKean equations under Lyapunov-type conditions , 2019, Stochastics and Dynamics.

[19]  Feng-Yu Wang,et al.  Distribution dependent SDEs with singular coefficients , 2018, Stochastic Processes and their Applications.

[20]  K. Ramanan,et al.  From the master equation to mean field game limit theory: a central limit theorem , 2018, Electronic Journal of Probability.

[21]  M. Röckner,et al.  STRONG AND WEAK CONVERGENCE IN THE AVERAGING PRINCIPLE FOR SDES WITH HÖLDER COEFFICIENTS , 2019 .

[22]  N. Frikha,et al.  WELL-POSEDNESS FOR SOME NON-LINEAR DIFFUSION PROCESSES AND RELATED PDE ON THE WASSERSTEIN SPACE , 2018, 1811.06904.

[23]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[24]  R. Carmona,et al.  Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations , 2018 .

[25]  L. Szpruch,et al.  McKean–Vlasov SDEs under measure dependent Lyapunov conditions , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[26]  P. Moral,et al.  A Taylor expansion of the square root matrix function , 2017, Journal of Mathematical Analysis and Applications.

[27]  D. Crisan,et al.  Smoothing properties of McKean–Vlasov SDEs , 2017, 1702.01397.

[28]  Daniel Lacker,et al.  Limit Theory for Controlled McKean-Vlasov Dynamics , 2016, SIAM J. Control. Optim..

[29]  Moderate deviations principle for systems of slow-fast diffusions , 2016, 1611.05903.

[30]  Feng-Yu Wang Distribution-Dependent SDEs for Landau Type Equations , 2016, 1606.05843.

[31]  M. H. Duong,et al.  Brownian Motion in an N-Scale Periodic Potential , 2016, Journal of Statistical Physics.

[32]  Josselin Garnier,et al.  Consensus Convergence with Stochastic Effects , 2015, ArXiv.

[33]  Juan Li,et al.  Mean-field stochastic differential equations and associated PDEs , 2014, 1407.1215.

[34]  Federico Toschi,et al.  Collective Dynamics from Bacteria to Crowds , 2014 .

[35]  R. Fetecau,et al.  Emergent behaviour in multi-particle systems with non-local interactions , 2013 .

[36]  Konstantinos Spiliopoulos Fluctuation analysis and short time asymptotics for multiple scales diffusion processes , 2013 .

[37]  Justin A. Sirignano,et al.  Fluctuation Analysis for the Loss from Default , 2013, 1304.1420.

[38]  Josselin Garnier,et al.  Large Deviations for a Mean Field Model of Systemic Risk , 2012, SIAM J. Financial Math..

[39]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[40]  Vivek S. Borkar,et al.  Averaging of Singularly Perturbed Controlled Stochastic Differential Equations , 2007 .

[41]  Pavel Drábek,et al.  Methods of Nonlinear Analysis: Applications to Differential Equations , 2007 .

[42]  E. Saar Multiscale Methods , 2006, astro-ph/0612370.

[43]  T. Kurtz,et al.  A stochastic evolution equation arising from the fluctuations of a class of interacting particle systems , 2004 .

[44]  A. Veretennikov,et al.  © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .

[45]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[46]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[47]  Sylvie Méléard,et al.  A Hilbertian approach for fluctuations on the McKean-Vlasov model , 1997 .

[48]  R. Zwanzig,et al.  Diffusion in a rough potential. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Jerzy Zabczyk,et al.  Regularity of solutions of linear stochastic equations in hilbert spaces , 1988 .

[50]  A. Veretennikov,et al.  Bounds for the Mixing Rate in the Theory of Stochastic Equations , 1988 .

[51]  M. Hitsuda,et al.  Tightness problem and Stochastic evolution equation arising from fluctuation phenomena for interacting diffusions , 1986 .

[52]  D. Dawson Critical dynamics and fluctuations for a mean-field model of cooperative behavior , 1983 .

[53]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[54]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .