Permanence and global attractivity for competitive Lotka-Volterra systems with delay

[1]  G. Seifert,et al.  On a delay-differential equation for single specie population variations , 1987 .

[2]  Yang Kuang,et al.  Global stability for a class of nonlinear nonautonomous delay equations , 1991 .

[3]  Hal L. Smith,et al.  Global stability for infinite-delay, dispersive Lotka-Volterra systems: Weakly interacting populations in nearly identical patches , 1991 .

[4]  M. Zhien,et al.  Harmless delays for uniform persistence , 1991 .

[5]  A. Leung Conditions for Global Stability Concerning a Prey-Predator Model with Delay Effects , 1979 .

[6]  Kondalsamy Gopalsamy Stability criteria for the linear system [Xdot](t) + A(t) X(t—τ) = 0 and an application to a non-linear system , 1990 .

[7]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[8]  K. Gopalsamy Harmless delays in model systems , 1983 .

[9]  K. Gopalsamy,et al.  Time lags and global stability in two-species competition , 1980 .

[10]  R. Martin,et al.  Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. , 1991 .

[11]  V. P. Shukla Conditions for global stability of two-species population models with discrete time delay , 1983 .

[12]  E. M. Wright A non-linear difference-differential equation. , 1946 .

[13]  Paul Waltman,et al.  A brief survey of persistence in dynamical systems , 1991 .

[14]  V. Sree Hari Rao,et al.  Stability criteria for a system involving two time delays , 1986 .

[15]  Nobuhiko Saitô,et al.  Time delays and chaos in two competing species , 1980 .