Scalable Rule Learning via Learning Representation
暂无分享,去创建一个
[1] Jens Lehmann,et al. DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.
[2] Qing Liu,et al. SWARM: An Approach for Mining Semantic Association Rules from Semantic Web Data , 2016, PRICAI.
[3] Daisy Zhe Wang,et al. ScaLeKB: scalable learning and inference over large knowledge bases , 2016, The VLDB Journal.
[4] Hans-Peter Kriegel,et al. A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.
[5] Andrew McCallum,et al. Compositional Vector Space Models for Knowledge Base Inference , 2015, AAAI Spring Symposia.
[6] Saturnino Luz Filho,et al. AAAI Spring Symposium Series , 2016, AAAI 2016.
[7] Gerhard Weikum,et al. WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .
[8] Jason Weston,et al. Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.
[9] Zhiyuan Liu,et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.
[10] Praveen Paritosh,et al. Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.
[11] Juan-Zi Li,et al. RDF2Rules: Learning Rules from RDF Knowledge Bases by Mining Frequent Predicate Cycles , 2015, ArXiv.
[12] Ming-Wei Chang,et al. Traversing Knowledge Graph in Vector Space without Symbolic Space Guidance , 2016 .
[13] Fabian M. Suchanek,et al. Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.
[14] Markus Krötzsch,et al. Wikidata , 2014, Commun. ACM.