Universal multi-objective function for optimising superplastic-damage constitutive equations

[1]  Amit K. Ghosh,et al.  Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy , 1979 .

[2]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[3]  Instability of Superplastic Aluminium Alloys , 1990 .

[4]  M. Mayo,et al.  Superplasticity in metals, ceramics, and intermetallics , 1990 .

[5]  David R Hayhurst,et al.  Mechanisms-based creep constitutive equations for an aluminium alloy , 1994 .

[6]  Investigation of a high accuracy uni-axial creep testpiece with slit extensometer ridges , 1995 .

[7]  Fionn P.E. Dunne,et al.  Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy , 1996 .

[8]  R. D. Wood,et al.  A review of the numerical analysis of superplastic forming , 1996 .

[9]  Analysis of superplastic sheet-metal forming in a circular closed-die considering non-uniform thinning , 1997 .

[10]  Jianguo Lin,et al.  Surface modelling and mesh generation for simulating superplastic forming , 1998 .

[11]  David R Hayhurst,et al.  Continuum damage mechanics analyses of type IV creep failure in ferritic steel crossweld specimens , 1999 .

[12]  Jianguo Lin,et al.  GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys , 1999 .

[13]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[14]  B. Cheong,et al.  Modelling of the hardening characteristics for superplastic materials , 2000 .

[15]  V. C. Venkatesh,et al.  Journal of Materials Processing Technology: Preface , 2001 .

[16]  X. Yaoc,et al.  A novel evolutionary algorithm for determining uni " ed creep damage constitutive equations , 2002 .

[17]  J. W. Atmar,et al.  Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems , 1990, Biological Cybernetics.