A Kriging-based sequential optimization method with dual transformation for black-box models

[1]  Rommel G. Regis,et al.  Trust regions in Kriging-based optimization with expected improvement , 2016 .

[2]  Vittorio Latorre,et al.  Canonical dual solutions to nonconvex radial basis neural network optimization problem , 2013, Neurocomputing.

[3]  Fabio Schoen,et al.  Global optimization of expensive black box problems with a known lower bound , 2013, J. Glob. Optim..

[4]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[5]  Alexandros A. Taflanidis,et al.  Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment , 2013 .

[6]  H. Takagi,et al.  Mixed-fidelity Efficient Global Optimization Applied to Design of Supersonic Wing , 2013 .

[7]  James M. Parr,et al.  Infill sampling criteria for surrogate-based optimization with constraint handling , 2012 .

[8]  Marianthi G. Ierapetritou,et al.  Feasibility analysis of black-box processes using an adaptive sampling Kriging-based method , 2012, Comput. Chem. Eng..

[9]  André I. Khuri,et al.  Response surface methodology , 2010 .

[10]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[11]  Ning Ruan,et al.  Solutions and optimality criteria for nonconvex quadratic-exponential minimization problem , 2008, Math. Methods Oper. Res..

[12]  D. Gao Duality Principles in Nonconvex Systems: Theory, Methods and Applications , 2000 .