A new kinematic model of pro- and supination of the human forearm.

We introduce a new kinematic model describing the motion of the human forearm bones, ulna and radius, during forearm rotation. During this motion between the two forearm extrem-positions, referred to as supination (palm up) and pronation (palm down), effects occur, that cannot be explained by the the established kinematic model of R. Fick from 1904. Especially, the motion of the ulna is not properly reproduced by Fick's model. During forearm rotation an evasive motion of the ulna is observed by various authors, using magnetic resonance imaging MRI) technology. Our new kinematic model also simulates this evasive motion. Furthermore, the model is enlarged to include angulations of the forearm bones. Using these results the influence of forearm fractures on the range of forearm motion can be predicted. This knowledge can be used by surgeons to choose the optimal therapy in re-establishing free forearm mobility.