Hoare logic for Java in Isabelle/HOL
暂无分享,去创建一个
[1] Richard J. Boulton,et al. Experience with Embedding Hardware Description Languages in HOL , 1992, TPCD.
[2] Frank S. de Boer,et al. A WP-calculus for OO , 1999, FoSSaCS.
[3] Arnd Poetzsch-Heffter,et al. An Architecture for Interactive Program Provers , 2000, TACAS.
[4] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[5] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[6] Bart Jacobs,et al. Java Program Verification via a Hoare Logic with Abrupt Termination , 2000, FASE.
[7] David Lorge Parnas,et al. A technique for software module specification with examples , 1972, CACM.
[8] K. Rustan M. Leino,et al. Checking Java Programs via Guarded Commands , 1999, ECOOP Workshops.
[9] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[10] Don Syme,et al. Proving Java Type Soundness , 1999, Formal Syntax and Semantics of Java.
[11] Krzysztof R. Apt,et al. Ten Years of Hoare's Logic: A Survey—Part I , 1981, TOPL.
[12] Stephen A. Cook,et al. Soundness and Completeness of an Axiom System for Program Verification , 1978, SIAM J. Comput..
[13] Tobias Nipkow,et al. Machine-Checking the Java Specification: Proving Type-Safety , 1999, Formal Syntax and Semantics of Java.
[14] Peter M Uller,et al. Universes: a type system for controlling representation exposure , 1999 .
[15] Bart Jacobs,et al. Reasoning about Java classes: preliminary report , 1998, OOPSLA '98.
[16] Peter V. Homeier,et al. A Mechanically Verified Verification Condition Generator , 1995, Comput. J..
[17] Sophia Drossopoulou,et al. Describing the Semantics of Java and Proving Type Soundness , 1999, Formal Syntax and Semantics of Java.
[18] Thomas Schreiber,et al. Auxiliary Variables and Recursive Procedures , 1997, TAPSOFT.
[19] Pierre America,et al. A proof theory for a sequential version of POOL , 1990 .
[20] Thomas Kleymann,et al. Hoare logic and VDM : machine-checked soundness and completeness proofs , 1998 .
[21] Christopher Strachey,et al. Fundamental Concepts in Programming Languages , 2000, High. Order Symb. Comput..
[22] Guy L. Steele,et al. The Java Language Specification , 1996 .
[23] David von Oheimb,et al. Axiomatic Semantics for Java^light in Isabelle/HOL , 2000 .
[24] Arnd Poetzsch-Heffter,et al. A Programming Logic for Sequential Java , 1999, ESOP.
[25] Wolfgang Thomas. Semantik und Verifikation , 1993, Perspektiven der Informatik.
[26] David von Oheimb. Analyzing Java in Isabelle-HOL: formalization, type safety and Hoare logic , 2001 .
[27] Gary T. Leavens,et al. Subtyping, Modular Specification, and Modular Verification for Applicative Object-Oriented Programs , 1994 .
[28] Bart Jacobs,et al. A Logic for the Java Modeling Language JML , 2001, FASE.
[29] Martin Hofmann,et al. Implementing a Program Logic of Objects in a Higher-Order Logic Theorem Prover , 2000, TPHOLs.
[30] Martín Abadi,et al. A Logic of Object-Oriented Programs , 1997, Verification: Theory and Practice.
[31] David von Oheimb. Hoare Logic for Mutual Recursion and Local Variables , 1999, FSTTCS.
[32] Tobias Nipkow,et al. Isabelle HOL - The Tutorial , 2000 .
[33] Peter Müller,et al. Modular Specification and Verification of Object-Oriented Programs , 2002, Lecture Notes in Computer Science.
[34] Sophia Drossopoulou,et al. Formal Techniques for Java Programs , 2000, ECOOP Workshops.
[35] K. R Leino,et al. Towards Reliable Modular Programs , 1995 .
[36] Lawrence Charles Paulson,et al. Isabelle: A Generic Theorem Prover , 1994 .
[37] Peter V. Homeier,et al. Mechanical Verification of Mutually Recursive Procedures , 1996, CADE.
[38] Hans-Juergen Boehm,et al. Side effects and aliasing can have simple axiomatic descriptions , 1985, TOPL.