Bayesian cyclic bounds for periodic parameter estimation

In many practical periodic parameter estimation problems, the appropriate cost function is periodic with respect to the unknown parameter. In this paper a new class of cyclic Bayesian lower bounds on the mean cyclic error (MCE) is developed. The new class includes the cyclic version of the Bayesian Cramér-Rao bound (BCRB). The cyclic BCRB requires milder regularity conditions compared to the conventional BCRB. The tightest bound in the proposed class is derived and it is shown that under a certain condition it achieves the minimum MCE (MMCE). The new lower bounds are compared with the cyclic version of the Ziv-Zakai lower bound (ZZLB) and the MCE's of the MMCE and maximum aposteriori probability (MAP) estimators for frequency estimation with uniform a-priori probability density function (pdf) of the unknown parameter. In this common estimation problem, the conventional BCRB does not exist, while the proposed cyclic BCRB provides a valid lower bound for parameter estimation.

[1]  Ruggero Reggiannini,et al.  A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..

[2]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[3]  Ioannis Pitas,et al.  Nonlinear processing and analysis of angular signals , 1998, IEEE Trans. Signal Process..

[4]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[5]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[6]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[7]  Brian M. Sadler,et al.  Bounds on bearing and symbol estimation with side information , 2001, IEEE Trans. Signal Process..

[8]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[9]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[10]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[11]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[12]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[13]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[14]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[15]  K. Mardia Statistics of Directional Data , 1972 .

[16]  K. C. Ho,et al.  Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses , 2005, IEEE Transactions on Signal Processing.

[17]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[18]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.