Un outil générique de conception et de révision coopérative de Bases de Connaissances s'appuyant sur la notion de situation. (A Knowledge Base Modelling and Cooperative Revision Tool based on the Concept of Situation)

Ce travail s'inscrit dans la recherche en acquisition des connaissances et en apprentissage automatique pour la modelisation et la validation incrementale de connaissances de resolution de probleme. Nous proposons un modele simple de representation des connaissances operatoires qui s'appuie sur la notion de situation, et presentons un outil de modelisation incrementale et de revision cooperative pour les Bases de Connaissances (BC) exprimees dans cette representation. Cet outil a ete mis au point dans le cadre d'un projet de conception de dialogues telematiques personnalises. Dans notre modele, chaque etape intermediaire de resolution du probleme est representee explicitement dans le SBC sous la forme d'un objet simple et comprehensible appele "nodule de situation". Les corrections et enrichissements de la BC sont effectues de maniere incrementale, c'est-a-dire au fur et a mesure de la decouverte de cas mal resolus, et cooperative, c'est-a-dire en s'appuyant sur un utilisateur / concepteur de la BC competent dans le domaine. Les caracteristiques de notre approche, que nous proposons de baptiser "revision situee", sont les suivantes : l'objectif est de faire en sorte que le processus de revision de la BC soit facile pour l'utilisateur, base sur des cas concrets, et operant des corrections "prudentes" et validees. L'outil REVINOS a ete developpe dans cette optique. Chaque phase de revision cooperative contient une etape de modelisation ou de reutilisation d'objets de la BC, a la charge du concepteur, puis une etape de correction proprement dite, effectuee de maniere semi-automatique. REVINOS guide le concepteur tout au long du processus de revision et propose des generalisations a des cas concrets similaires. REVINOS offre l'originalite de chercher a valider les repercussions des corrections proposees, en soumettant au concepteur des exemples abstraits qui correspondent a des ensembles de cas concrets de resolution.

[1]  David Chapman,et al.  Pengi: An Implementation of a Theory of Activity , 1987, AAAI.

[2]  Gerald DeJong,et al.  Explanation-Based Learning: An Alternative View , 2005, Machine Learning.

[3]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[4]  Francesco Bergadano,et al.  An Interactive System to Learn Functional Logic Programs , 1993, IJCAI.

[5]  Allen Ginsberg,et al.  Theory Reduction, Theory Revision, and Retranslation , 1990, AAAI.

[6]  William J. Clancey,et al.  Heuristic Classification , 1986, Artif. Intell..

[7]  Bob J. Wielinga,et al.  How Situated is Cognition? , 1991, IJCAI.

[8]  Randall Davis,et al.  Interactive Transfer of Expertise: Acquisition of New Inference Rules , 1993, IJCAI.

[9]  E. R. Bareiss,et al.  Protos: An Exemplar-Based Learning Apprentice , 1988, Int. J. Man Mach. Stud..

[10]  Luc Steels,et al.  Components of Expertise , 1990, AI Mag..

[11]  Francesco Bergadano,et al.  Guiding induction with domain theories , 1990 .

[12]  William J. Clancey,et al.  Model Construction Operators , 1992, Artif. Intell..

[13]  Terry Winograd,et al.  Understanding computers and cognition - a new foundation for design , 1987 .

[14]  Derek H. Sleeman,et al.  Automating the Refinement of Knowledge-Based Systems , 1990, ECAI.

[15]  P. Compton,et al.  A philosophical basis for knowledge acquisition , 1990 .

[16]  Daniel Kayser La représentation des connaissances , 1997 .

[17]  C SchankRoger,et al.  Dynamic Memory: A Theory of Reminding and Learning in Computers and People , 1983 .

[18]  Thomas R. Gruber,et al.  The Acquisition of Strategic Knowledge , 1989 .

[19]  Richard Fikes,et al.  The role of frame-based representation in reasoning , 1985, CACM.

[20]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[21]  Peter Szolovits,et al.  Causal Understanding of Patient Illness in Medical Diagnosis , 1981, IJCAI.

[22]  Benjamin D. Smith,et al.  Incremental Non-Backtracking Focusing: A Polynomially Bounded Generalization Algorithm for Version Spaces , 1990, AAAI.

[23]  Varol Akman,et al.  The Use of Situation Theory in Context Modeling , 1997, Comput. Intell..

[24]  Allen Ginsberg Knowledge-Base Reduction: A New Approach to Checking knowledge Bases for Inconsistency and Redundancy , 1988, AAAI.

[25]  Michael J. Pazzani,et al.  A Methodology for Evaluating Theory Revision Systems: Results with Audrey II , 1993, IJCAI.

[26]  L. Quéré Cognition in Practice , 1996 .

[27]  Patrick Brézillon,et al.  Using Knowledge in Its Context: Report on the IJCAI-93 Workshop , 1995, AI Mag..

[28]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[29]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[30]  Allen Ginsberg,et al.  Automatic Refinement of Expert System Knowledge Bases , 1988 .

[31]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[32]  Filippo Neri,et al.  Multistrategy learning and theory revision , 1993, Machine Learning.

[33]  Douglas H. Fisher,et al.  A Case Study of Incremental Concept Induction , 1986, AAAI.

[34]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[35]  Jean-Paul Krivine,et al.  L'acquisition des connaissances vue comme un processus de modélisation : méthodes et outils , 1991 .

[36]  John McDermott,et al.  Usable and reusable programming constructs , 1991 .

[37]  Oren Etzioni,et al.  PRODIGY: an integrated architecture for planning and learning , 1991, SGAR.

[38]  Samson W. Tu,et al.  A multiple-method knowledge-acquisition shell for the automatic generation of knowledge-acquisition tools , 1992 .

[39]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[40]  Harold Cohen,et al.  How to Draw Three People in a Botanical Garden , 1988, AAAI.

[41]  D. Angluin Queries and Concept Learning , 1988 .

[42]  G. Kelly The Psychology of Personal Constructs , 2020 .

[43]  Daniel G. Bobrow,et al.  An Augmented State Transition Network Analysis Procedure , 1969, IJCAI.

[44]  William J. Clancey,et al.  The knowledge level reinterpreted: Modeling socio‐technical systems , 1993, Int. J. Intell. Syst..

[45]  Christel Vrain,et al.  OGUST: a system that learns using domain properties expressed as the theorems , 1990 .

[46]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[47]  Keith Devlin,et al.  Logic and information , 1991 .

[48]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[49]  Carl Hewitt,et al.  A Universal Modular ACTOR Formalism for Artificial Intelligence , 1973, IJCAI.

[50]  Marcel Schoppers,et al.  The Use of Dynamics in an Intelligent Controller for a Space Faring Rescue Robot , 1995, Artif. Intell..

[51]  K. Upton,et al.  A modern approach , 1995 .

[52]  Ron Kohavi,et al.  Bottom-Up Induction of Oblivious Read-Once Decision Graphs: Strengths and Limitations , 1994, AAAI.

[53]  Derek H. Sleeman,et al.  Improving the Efficiency of Knowledge Base Refinement , 1996, ICML.

[54]  Frank van Harmelen,et al.  A Conceptual Modelling Framework for Knowledge-level Reflection , 1991, AI Commun..

[55]  Edward H. Shortliffe,et al.  Production Rules as a Representation for a Knowledge-Based Consultation Program , 1977, Artif. Intell..

[56]  Tom M. Mitchell,et al.  A Personal Learning Apprentice , 1992, AAAI.

[57]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[58]  Raymond J. Mooney,et al.  Changing the Rules: A Comprehensive Approach to Theory Refinement , 1990, AAAI.

[59]  Allen Ginsberg,et al.  Theory Revision via Prior Operationalization , 1988, AAAI.

[60]  Nigel Shadbolt,et al.  Knowledge Acquisition Process Support Through Generalised Directive Models , 1993 .

[61]  Jeffrey M. Bradshaw,et al.  Knowledge acquisition techniques for group decision support , 1993 .

[62]  Leslie Pack Kaelbling,et al.  A Situated View of Representation and Control , 1995, Artif. Intell..

[63]  Edward A. Felgenbaum The art of artificial intelligence: themes and case studies of knowledge engineering , 1977, IJCAI 1977.

[64]  Raymond J. Mooney,et al.  Theory Refinement Combining Analytical and Empirical Methods , 1994, Artif. Intell..

[65]  Philip Rademakers,et al.  Generic models and their support in modeling problem solving behavior , 1993 .

[66]  William J. Clancey,et al.  Situated Action: A Neuropsychologiwl Interpretation Response to Vera and Simon , 2005 .

[67]  Maurice Bruynooghe,et al.  Interactive Concept-Learning and Constructive Induction by Analogy , 1992, Machine Learning.

[68]  Jie Cheng,et al.  Improved Decision Trees: A Generalized Version of ID3 , 1988, ML.

[69]  William A. Woods,et al.  Computational Linguistics Transition Network Grammars for Natural Language Analysis , 2022 .

[70]  B. Chandrasekaran,et al.  Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design , 1986, IEEE Expert.

[71]  Bob J. Wielinga,et al.  KADS: a modelling approach to knowledge engineering , 1992 .

[72]  Mark L. Miller,et al.  Structured Planning and Debugging , 1977, IJCAI.

[73]  Gilles Bisson Kbg : induction de bases de connaissances en logique des predicats , 1993 .

[74]  T. Kuhn,et al.  The Structure of Scientific Revolutions , 1963 .