Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

[1]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Engelman,et al.  Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. , 1983, Journal of molecular biology.

[3]  Faraday Discuss , 1985 .

[4]  M. Saxton,et al.  Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. , 1989, Biophysical journal.

[5]  Peet Kask,et al.  Statistical accuracy in fluorescence fluctuation experiments , 1997, European Biophysics Journal.

[6]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[7]  I. Yilgor,et al.  Thermal stabilities of end groups in hydroxyalkyl terminated polydimethylsiloxane oligomers , 1998 .

[8]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[9]  Mathias Winterhalter,et al.  Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes , 2000 .

[10]  Mathias Winterhalter,et al.  Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles , 2000 .

[11]  A. Eisenberg,et al.  Thermodynamic Size Control of Block Copolymer Vesicles in Solution , 2001 .

[12]  W. Meier,et al.  Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. , 2001, Chemical communications.

[13]  Mathias Winterhalter,et al.  Amphiphilic block copolymer nanocontainers as bioreactors , 2001 .

[14]  Ken Jacobson,et al.  A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains , 2002, Science.

[15]  A. Graff,et al.  Virus-assisted loading of polymer nanocontainer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  F. Bates,et al.  From Membranes to Melts, Rouse to Reptation: Diffusion in Polymersome versus Lipid Bilayers , 2002 .

[17]  J. Rigaud,et al.  Reconstitution of membrane proteins into liposomes. , 2003, Methods in enzymology.

[18]  A. Benda,et al.  How To Determine Diffusion Coefficients in Planar Phospholipid Systems by Confocal Fluorescence Correlation Spectroscopy , 2003 .

[19]  T. Waldmann,et al.  Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Michael Edidin,et al.  Lipids on the frontier: a century of cell-membrane bilayers , 2003, Nature Reviews Molecular Cell Biology.

[21]  M. Longo,et al.  Anomalous subdiffusion in heterogeneous lipid bilayers , 2003 .

[22]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[23]  D E Discher,et al.  Effect of bilayer thickness on membrane bending rigidity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[24]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[25]  Hervé Rigneault,et al.  Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. , 2005, Biophysical journal.

[26]  M. Klein,et al.  Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes. , 2005, Nano letters.

[27]  Eric R Geertsma,et al.  Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. , 2005, Biophysical journal.

[28]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[29]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[30]  Jan Steyaert,et al.  Therapeutic nanoreactors: combining chemistry and biology in a novel triblock copolymer drug delivery system. , 2005, Nano letters.

[31]  M. Ameloot,et al.  Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. , 2006, Biophysical journal.

[32]  R. S. Hodges,et al.  Lateral mobility of proteins in liquid membranes revisited , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Mathias Winterhalter,et al.  A nanocompartment system (Synthosome) designed for biotechnological applications. , 2006, Journal of biotechnology.

[34]  Gernot Guigas,et al.  Size-dependent diffusion of membrane inclusions. , 2006, Biophysical journal.

[35]  Wolfgang Meier,et al.  Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z , 2007, Proceedings of the National Academy of Sciences.

[36]  Olaf S Andersen,et al.  Bilayer thickness and membrane protein function: an energetic perspective. , 2007, Annual review of biophysics and biomolecular structure.

[37]  Michael J Saxton,et al.  A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. , 2007, Biophysical journal.

[38]  A. Levine,et al.  Corrections to the Saffman-Delbruck mobility for membrane bound proteins. , 2007, Biophysical Journal.

[39]  U. Schwaneberg,et al.  Functionalized nanocompartments (synthosomes) with a reduction-triggered release system. , 2008, Angewandte Chemie.

[40]  M. Weiss,et al.  Influence of hydrophobic mismatching on membrane protein diffusion. , 2008, Biophysical journal.

[41]  Petra Schwille,et al.  Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. , 2008, Biophysical journal.

[42]  A. Holt,et al.  Lateral diffusion of membrane proteins. , 2009, Journal of the American Chemical Society.

[43]  M. Ameloot,et al.  On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles , 2009 .

[44]  Wolfgang Meier,et al.  Immobilized protein-polymer nanoreactors. , 2009, Small.

[45]  C. Palivan,et al.  Amphiphilic diblock copolymers for molecular recognition: metal-nitrilotriacetic acid functionalized vesicles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[46]  C. Palivan,et al.  Amphiphilic copolymer membranes promote NADH:Ubiquinone Oxidoreductase activity : towards an electron-transfer nanodevice , 2010 .

[47]  M. Hof,et al.  Z-Scan Fluorescence Correlation Spectroscopy: A Powerful Tool for Determination of Lateral Diffusion in Biological Systems , 2011 .

[48]  U. Schwaneberg,et al.  Nanocompartments with a pH release system based on an engineered OmpF channel protein , 2011 .

[49]  U. Schwaneberg,et al.  Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes , 2011, Journal of nanobiotechnology.

[50]  Cornelia G Palivan,et al.  Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. , 2011, Chemistry.

[51]  Yen Wah Tong,et al.  Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. , 2012, Small.

[52]  Thomas Walz,et al.  High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes , 2012, Journal of the American Chemical Society.

[53]  Cornelia G Palivan,et al.  Protein-polymer nanoreactors for medical applications. , 2012, Chemical Society reviews.

[54]  C. Palivan,et al.  Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[55]  Fabian Itel,et al.  Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins , 2012, Scientific Reports.

[56]  A. Müller,et al.  Biological-like vesicular structures self-assembled from DNA-block copolymers. , 2012, Chemical communications.

[57]  Gang Zhang,et al.  Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site , 2012, Scientific Reports.

[58]  P. Schwille,et al.  Lateral membrane diffusion modulated by a minimal actin cortex. , 2013, Biophysical journal.

[59]  W. Stillwell Introduction to Biological Membranes , 2013 .

[60]  J. Enderlein,et al.  Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy. , 2013, Biophysical journal.

[61]  Cornelia G Palivan,et al.  Polymer nanoreactors shown to produce and release antibiotics locally. , 2013, Chemical communications.

[62]  A. Najer,et al.  Polymer nanocompartments in broad-spectrum medical applications. , 2013, Nanomedicine.

[63]  Wolfgang Meier,et al.  A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. , 2014, Journal of materials chemistry. B.

[64]  Yue-xiao Shen,et al.  Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides , 2014, PloS one.

[65]  Patrick O. Saboe,et al.  Biomimetic membranes: A review , 2014 .

[66]  A. Najer,et al.  Nanomimics of host cell membranes block invasion and expose invasive malaria parasites. , 2014, ACS nano.

[67]  Laura D. Hughes,et al.  Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers , 2014, PloS one.

[68]  Fabian Itel,et al.  Nanoreactors for Biomedical Applications , 2014 .

[69]  B. Liedberg,et al.  Mixing, diffusion, and percolation in binary supported membranes containing mixtures of lipids and amphiphilic block copolymers. , 2014, Journal of the American Chemical Society.

[70]  Fabian Itel,et al.  Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study , 2014 .

[71]  Fabian Itel,et al.  Polymersomes with engineered ion selective permeability as stimuli-responsive nanocompartments with preserved architecture. , 2015, Biomaterials.

[72]  Yue-xiao Shen,et al.  A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes , 2015 .

[73]  Fabian Itel,et al.  Selective ion-permeable membranes by insertion of biopores into polymersomes. , 2015, Physical chemistry chemical physics : PCCP.