Thyroid status co‐regulates thyroid hormone receptor and co‐modulator genes specifically in the hypothalamus

[1]  J. Palha,et al.  Thyroid hormone distribution in the mouse brain: the role of transthyretin 1 1 Presented in part in the abstract form to the Society for Neuroscience meeting in San Diego, CA, USA, November 2001. , 2002, Neuroscience.

[2]  B. Demeneix,et al.  Feedback on hypothalamic TRH transcription is dependent on thyroid hormone receptor N terminus. , 2002, Molecular endocrinology.

[3]  D. Kenan,et al.  Direct interactions between corepressors and coactivators permit the integration of nuclear receptor-mediated repression and activation. , 2002, Molecular endocrinology.

[4]  P. Larsen,et al.  Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. , 2002, Endocrine reviews.

[5]  Á. Pascual,et al.  Nuclear hormone receptors and gene expression. , 2001, Physiological reviews.

[6]  F. Wondisford,et al.  Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. , 2001, The Journal of clinical investigation.

[7]  S. Na,et al.  Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors , 2001, Cellular and Molecular Life Sciences CMLS.

[8]  C. Niehrs,et al.  Synexpression groups in eukaryotes , 1999, Nature.

[9]  M. Montminy,et al.  Pbx-Hox Heterodimers Recruit Coactivator-Corepressor Complexes in an Isoform-Specific Manner , 1999, Molecular and Cellular Biology.

[10]  B. Demeneix,et al.  Physiological regulation of hypothalamic TRH transcription in vivo is T3 receptor isoform specific , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  F. Wondisford,et al.  A unique role of the beta-2 thyroid hormone receptor isoform in negative regulation by thyroid hormone. Mapping of a novel amino-terminal domain important for ligand-independent activation. , 1997, The Journal of biological chemistry.

[12]  N. Heerema,et al.  Multiplex PCR: critical parameters and step-by-step protocol. , 1997, BioTechniques.

[13]  R. Lechan,et al.  Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. , 1994, Endocrinology.

[14]  M. Lazar Thyroid hormone receptors: multiple forms, multiple possibilities. , 1993, Endocrine reviews.

[15]  J. Loeffler,et al.  Assignment of the beta-thyroid hormone receptor to 3,5,3'-triiodothyronine-dependent inhibition of transcription from the thyrotropin-releasing hormone promoter in chick hypothalamic neurons. , 1992, Molecular endocrinology.

[16]  W. Rand,et al.  Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. , 1992, Endocrinology.

[17]  M. Dratman,et al.  Transport of iodothyronines from bloodstream to brain: contributions by blood:brain and choroid plexus:cerebrospinal fluid barriers , 1991, Brain Research.

[18]  P. Larsen,et al.  Identification of a thyroid hormone receptor that is pituitary-specific. , 1989, Science.

[19]  R. Zoeller,et al.  Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. , 1987, Proceedings of the National Academy of Sciences of the United States of America.