Stratified Graphical Models - Context-Specific Independence in Graphical Models
暂无分享,去创建一个
Jukka Corander | Timo Koski | Johan Pensar | Henrik J. Nyman | Henrik Nyman | J. Corander | T. Koski | J. Pensar
[1] N. Wermuth,et al. Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .
[2] John M. Noble,et al. Bayesian Networks: An Introduction , 2009 .
[3] Jukka Corander,et al. Labelled Graphical Models , 2003 .
[4] Jukka Corander,et al. Parallell interacting MCMC for learning of topologies of graphical models , 2008, Data Mining and Knowledge Discovery.
[5] Poul Svante. Decomposable log-linear models , 2015 .
[6] Søren Højsgaard,et al. Statistical Inference in Context Specific Interaction Models for Contingency Tables , 2004 .
[7] P. Green,et al. Decomposable graphical Gaussian model determination , 1999 .
[8] A. Dawid,et al. Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .
[9] Stephen E. Fienberg,et al. Discrete Multivariate Analysis: Theory and Practice , 1976 .
[10] D. Madigan,et al. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .
[11] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[12] Mikko Koivisto,et al. Exact Bayesian Structure Discovery in Bayesian Networks , 2004, J. Mach. Learn. Res..
[13] Sergio Bacallado,et al. Bayesian analysis of variable-order, reversible Markov chains , 2011, 1105.2640.
[14] Nir Friedman,et al. Learning Bayesian Networks with Local Structure , 1996, UAI.
[15] P. Bühlmann,et al. Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .
[16] D. Geiger,et al. Stratified exponential families: Graphical models and model selection , 2001 .
[17] Akimichi Takemura,et al. Hierarchical subspace models for contingency tables , 2009, J. Multivar. Anal..
[18] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[19] Jukka Corander,et al. Bayesian graphical model determination using decision theory , 2003 .
[20] Søren Højsgaard,et al. Split models for contingency tables , 2003, Comput. Stat. Data Anal..
[21] S. Haberman,et al. The analysis of frequency data , 1974 .
[22] Paolo Giudici,et al. Improving Markov Chain Monte Carlo Model Search for Data Mining , 2004, Machine Learning.
[23] Mats Gyllenberg,et al. Bayesian model learning based on a parallel MCMC strategy , 2006, Stat. Comput..
[24] JORMA RISSANEN,et al. A universal data compression system , 1983, IEEE Trans. Inf. Theory.
[25] Poul Svante Eriksen,et al. Decomposable log-linear models , 2005 .
[26] T. Speed,et al. Markov Fields and Log-Linear Interaction Models for Contingency Tables , 1980 .
[27] Meir Feder,et al. A universal finite memory source , 1995, IEEE Trans. Inf. Theory.
[28] D. Edwards,et al. A fast procedure for model search in multidimensional contingency tables , 1985 .
[29] Gregory F. Cooper,et al. A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .
[30] Craig Boutilier,et al. Context-Specific Independence in Bayesian Networks , 1996, UAI.
[31] P. Dellaportas,et al. Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models , 1999 .