Algorithm for the estimation of ionosphere parameters from ground scatter echoes of SuperDARN

[1]  R. Fiori,et al.  Seasonal and solar cycle variations in the ionospheric convection reversal boundary location inferred from monthly SuperDARN data sets , 2016 .

[2]  N. Nishitani,et al.  Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation , 2016, Earth, Planets and Space.

[3]  J. St.‐Maurice,et al.  Application of ground scatter returns for calibration of HF interferometry data , 2015, Earth, Planets and Space.

[4]  W. T. Sivla,et al.  Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica , 2015 .

[5]  N. Nishitani,et al.  Statistical study of medium-scale traveling ionospheric disturbances using SuperDARN Hokkaido ground backscatter data for 2011 , 2015, Earth, Planets and Space.

[6]  John Devlin,et al.  Determination of ionospheric parameters in real time using SuperDARN HF Radars , 2014 .

[7]  J. Ruohoniemi,et al.  Geomagnetic Dependence of Medium Scale Traveling Ionospheric Disturbances (MSTIDs) Observed by Mid- and High- Latitude SuperDARN Radars , 2013 .

[8]  Hongqiao Hu,et al.  First observations of polar mesosphere summer echoes by SuperDARN Zhongshan radar , 2013 .

[9]  M. Freeman,et al.  Traveling ionospheric disturbances in the Weddell Sea Anomaly associated with geomagnetic activity , 2013 .

[10]  M. Freeman,et al.  Characteristics of medium‐scale traveling ionospheric disturbances observed near the Antarctic Peninsula by HF radar , 2013 .

[11]  Mervyn P. Freeman,et al.  A reassessment of SuperDARN meteor echoes from the upper mesosphere and lower thermosphere , 2013 .

[12]  Ning Li,et al.  Inversion of Sweep Frequency Backscatter Ionogram From Monostatic HF Sky-Wave Radar , 2013, IEEE Geoscience and Remote Sensing Letters.

[13]  N. Nishitani,et al.  Study of large-scale traveling ionospheric disturbances using the data of SuperDARN Hokkaido radar and Russian chirp sounding network , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[14]  G. Hussey,et al.  HF ground scatter from the polar cap: Ionospheric propagation and ground surface effects , 2010 .

[15]  Keisuke Hosokawa,et al.  Large‐scale traveling ionospheric disturbance observed by superDARN Hokkaido HF radar and GPS networks on 15 December 2006 , 2010 .

[16]  R. Gillies,et al.  Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes , 2009 .

[17]  K. Baker,et al.  Probabilistic identification of high‐frequency radar backscatter from the ground and ionosphere based on spectral characteristics , 2009 .

[18]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[19]  Peter. Dyson,et al.  A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions , 2007 .

[20]  Colin L. Waters,et al.  Spectral width of SuperDARN echoes: measurement, use and physical interpretation , 2006 .

[21]  William A. Bristow,et al.  Determining characteristics of HF communications links using SuperDARN , 2002 .

[22]  G. Chisham,et al.  Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter , 2002 .

[23]  E. C. Thomas,et al.  Initial backscatter occurrence statistics from the CUTLASS HF radars , 1997 .

[24]  E. C. Thomas,et al.  Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars , 1997 .

[25]  T. B. Jones,et al.  DARN/SuperDARN , 1995 .

[26]  R. Jones,et al.  A Versatile Three-Dimensional Ray Tracing Computer Program for Radio Waves in the Ionosphere , 1975 .

[27]  R. Norman,et al.  Mapping the Ionosphere using a HF Radar backscatter inversion technique. , 2006 .