Deep neural network architectures for modulation classification

In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 10 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to deliver performance that exceeds that of expert-based approaches. Here, we follow the framework of [1] and find deep neural network architectures that deliver higher accuracy than the state of the art. We tested the architecture of [1] and found it to achieve an accuracy of approximately 75% of correctly recognizing the modulation type. We first tune the CNN architecture of [1] and find a design with four convolutional layers and two dense layers that gives an accuracy of approximately 83.8% at high SNR. We then develop architectures based on the recently introduced ideas of Residual Networks (ResNet [2]) and Densely Connected Networks (DenseNet [3]) to achieve high SNR accuracies of approximately 83.5% and 86.6%, respectively. Finally, we introduce a Convolutional Long Short-term Deep Neural Network (CLDNN [4]) to achieve an accuracy of approximately 88.5% at high SNR.

[1]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Timothy J. O'Shea,et al.  Deep architectures for modulation recognition , 2017, 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[3]  Octavia A. Dobre,et al.  Robust QAM modulation classification algorithm using cyclic cumulants , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[4]  Timothy J. O'Shea,et al.  Radio Machine Learning Dataset Generation with GNU Radio , 2016 .

[5]  Tara N. Sainath,et al.  Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  T. Charles Clancy,et al.  Convolutional Radio Modulation Recognition Networks , 2016, EANN.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Jean-Louis Lacoume,et al.  Multiple hypothesis modulation classification based on cyclic cumulants of different orders , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[10]  Timothy J. O'Shea,et al.  Radio transformer networks: Attention models for learning to synchronize in wireless systems , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.