Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans

Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode Caenorhabditis elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis toward colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior.

[1]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Klass,et al.  Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span , 1977, Mechanisms of Ageing and Development.

[3]  D L Riddle,et al.  The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. , 1984, Developmental biology.

[4]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  E. Hedgecock,et al.  Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis , 1990, Nature.

[6]  Cori Bargmann,et al.  Control of larval development by chemosensory neurons in Caenorhabditis elegans. , 1991, Science.

[7]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[8]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[9]  Monica Driscoll,et al.  Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor , 1995, Nature.

[10]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[11]  Wendy S. Schackwitz,et al.  Chemosensory Neurons Function in Parallel to Mediate a Pheromone Response in C. elegans , 1996, Neuron.

[12]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[13]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Loyet,et al.  Novel Ca2+-binding Protein (CAPS) Related to UNC-31 Required for Ca2+-activated Exocytosis* , 1997, The Journal of Biological Chemistry.

[15]  E. Floor,et al.  CAPS (Mammalian UNC-31) Protein Localizes to Membranes Involved in Dense-Core Vesicle Exocytosis , 1998, Neuron.

[16]  J. Kaplan,et al.  Distinct Signaling Pathways Mediate Touch and Osmosensory Responses in a Polymodal Sensory Neuron , 1999, The Journal of Neuroscience.

[17]  G Tononi,et al.  Measures of degeneracy and redundancy in biological networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. Wittenburg,et al.  Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Plasterk,et al.  The complete family of genes encoding G proteins of Caenorhabditis elegans , 1999, Nature Genetics.

[20]  P. Sengupta,et al.  The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans. , 2000, Genes & development.

[21]  J. Thomas,et al.  Dauer formation induced by high temperatures in Caenorhabditis elegans. , 2000, Genetics.

[22]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[23]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[24]  B. Garvik,et al.  Principles for the buffering of genetic variation. , 2001 .

[25]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Broadie,et al.  Drosophila CAPS Is an Essential Gene that Regulates Dense-Core Vesicle Release and Synaptic Vesicle Fusion , 2001, Neuron.

[27]  Cori Bargmann,et al.  Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[29]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[30]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[31]  Hatim A. Zariwala,et al.  Step Response Analysis of Thermotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[32]  Y. Ohshima,et al.  Distribution and movement of Caenorhabditis elegans on a thermal gradient , 2003, Journal of Experimental Biology.

[33]  Aravinthan D. T. Samuel,et al.  Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types , 2004, Current Biology.

[34]  W. Ryu,et al.  The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans , 2004, Current Biology.

[35]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[36]  V. A. Klenchin,et al.  CAPS Acts at a Prefusion Step in Dense-Core Vesicle Exocytosis as a PIP2 Binding Protein , 2004, Neuron.

[37]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[38]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[39]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[40]  A. Wagner Distributed robustness versus redundancy as causes of mutational robustness. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  Koutarou D. Kimura,et al.  Diverse regulation of sensory signaling by C. elegans nPKC‐epsilon/eta TTX‐4 , 2005, The EMBO journal.

[42]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[43]  Aravinthan D. T. Samuel,et al.  The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation , 2006, BMC Neuroscience.

[44]  S. Lockery,et al.  Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases , 2006, Genetics.

[45]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.

[46]  Cornelia I Bargmann,et al.  A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans , 2006, PLoS biology.

[47]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[48]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[49]  Aravinthan D. T. Samuel,et al.  Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. , 2007, Journal of neurophysiology.

[50]  Andreas Wagner,et al.  Alternative routes and mutational robustness in complex regulatory networks , 2007, Biosyst..

[51]  M. P. Nusbaum,et al.  Convergent Motor Patterns from Divergent Circuits , 2007, The Journal of Neuroscience.

[52]  M. Chalfie,et al.  Targeted cell killing by reconstituted caspases , 2007, Proceedings of the National Academy of Sciences.

[53]  Raymond B Huey,et al.  Thermal preference of Caenorhabditis elegans: a null model and empirical tests , 2007, Journal of Experimental Biology.

[54]  E. Jorgensen,et al.  UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[55]  S. Sugita,et al.  Ca2+-dependent Activator Protein for Secretion 1 Is Critical for Constitutive and Regulated Exocytosis but Not for Loading of Transmitters into Dense Core Vesicles* , 2007, Journal of Biological Chemistry.

[56]  Aravinthan D. T. Samuel,et al.  Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans , 2007, Journal of Experimental Biology.

[57]  J. Kaplan,et al.  PKC-1 regulates secretion of neuropeptides , 2007, Nature Neuroscience.

[58]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[59]  Daniel Ramot,et al.  Thermotaxis is a Robust Mechanism for Thermoregulation in Caenorhabditis elegans Nematodes , 2008, The Journal of Neuroscience.

[60]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[61]  Sreekanth H. Chalasani,et al.  A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans , 2008, Neuron.

[62]  Daniel Ramot,et al.  Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans , 2008, Nature Neuroscience.

[63]  Jing W. Wang,et al.  Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[64]  James M. Whitacre,et al.  Degeneracy: a link between evolvability, robustness and complexity in biological systems , 2009, Theoretical Biology and Medical Modelling.

[65]  A. Mochizuki,et al.  Steepness of thermal gradient is essential to obtain a unified view of thermotaxis in C. elegans. , 2009, Journal of theoretical biology.

[66]  Kazushige Touhara,et al.  Two Chemoreceptors Mediate Developmental Effects of Dauer Pheromone in C. elegans , 2009, Science.

[67]  Evan Z. Macosko,et al.  A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behavior in C. elegans , 2009, Nature.

[68]  S. Kadener,et al.  Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans , 2010, PLoS biology.

[69]  U. Schibler,et al.  The mammalian circadian timing system: organization and coordination of central and peripheral clocks. , 2010, Annual review of physiology.

[70]  W. Schafer,et al.  Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors , 2010, Nature Neuroscience.

[71]  Axel Bender,et al.  Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems , 2009, Theoretical Biology and Medical Modelling.

[72]  Eve Marder,et al.  Precise Temperature Compensation of Phase in a Rhythmic Motor Pattern , 2010, PLoS biology.

[73]  E. Kodama,et al.  Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans , 2010, Genes, brain, and behavior.

[74]  Oliver Hobert,et al.  Hypoxia activates a latent circuit for processing gustatory information in C. elegans , 2010, Nature Neuroscience.

[75]  P. Sengupta,et al.  The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans , 2010, Development.

[76]  P. Sengupta,et al.  Regulation of Response Properties and Operating Range of the AFD Thermosensory Neurons by cGMP Signaling , 2011, Current Biology.

[77]  W. Schafer,et al.  Lateral Facilitation between Primary Mechanosensory Neurons Controls Nose Touch Perception in C. elegans , 2011, Neuron.

[78]  Miriam B Goodman,et al.  Heat Avoidance Is Regulated by Transient Receptor Potential (TRP) Channels and a Neuropeptide Signaling Pathway in Caenorhabditis elegans , 2011, Genetics.

[79]  R. Lints,et al.  The Robustness of Caenorhabditis elegans Male Mating Behavior Depends on the Distributed Properties of Ray Sensory Neurons and Their Output through Core and Male-Specific Targets , 2011, The Journal of Neuroscience.

[80]  M. de Bono,et al.  Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior , 2011, Neuron.

[81]  P. Garrity,et al.  Heat avoidance is regulated by transient receptor potential ( TRP ) channels and a neuropeptide signaling pathway in C . elegans , 2011 .