Lower Bounds for Scheduling on Identical Parallel Machines with Heads and Tails
暂无分享,去创建一个
[1] W. A. Horn. Some simple scheduling algorithms , 1974 .
[2] James D. Blocher,et al. Scheduling of parallel processors: A posterior bound on LPT sequencing and a two-step algorithm , 1991 .
[3] Jan Karel Lenstra,et al. Sequencing and scheduling : an annotated bibliography , 1997 .
[4] Günter Schmidt,et al. Scheduling with limited machine availability , 2000, Eur. J. Oper. Res..
[5] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[6] Eric Pinson,et al. Jackson's Pseudo Preemptive Schedule for the Pm/ri, qi/Cmax scheduling problem , 1998, Ann. Oper. Res..
[7] J. Carlier. The one-machine sequencing problem , 1982 .
[8] David S. Johnson,et al. `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.
[9] Mauro Dell'Amico,et al. Optimal Scheduling of Tasks on Identical Parallel Processors , 1995, INFORMS J. Comput..
[10] Eugene L. Lawler,et al. Sequencing and scheduling: algorithms and complexity , 1989 .
[11] Jacques Carlier,et al. Scheduling jobs with release dates and tails on identical machines to minimize the makespan , 1987 .
[12] J. Carlier,et al. Une méthode arborescente pour résoudre les problèmes cumulatifs , 1991 .
[13] S. Webster. A general lower bound for the makespan problem , 1996 .
[14] Mohamed Haouari,et al. Minimizing makespan on parallel machines subject to release dates and delivery times , 2002 .