Trifork , a New Pseudorandom Number Generator Based on Lagged Fibonacci Maps

A new family of cryptographically secure pseudorandom number generators, is described. It is based on the combination of the sequences generated by three coupled Lagged Fibonacci generators, mutually perturbed. The mutual perturbation method consists of the bitwise XOR cross-addition of the output of each generator with the right-shifted output of the nearby generator. The proposed generator has better entropy and much longer repetition period than the conventional Lagged Fibonacci Generator. It passed successfully the most stringent randomness test suites. The effective speed of generation is approximately of one bit per computer clock cycle. The algorithm was programmed in C99 with 64 bits of word size.

[1]  Gonzalo Álvarez,et al.  Trident, a New Pseudo Random Number Generator Based on Coupled Chaotic Maps , 2010, CISIS.

[2]  Moon K. Chetry,et al.  A Note On Self-Shrinking Lagged Fibonacci Generator , 2010, Int. J. Netw. Secur..

[3]  Robert J. Harrison,et al.  Implementation of Hardware-Accelerated Scalable Parallel Random Number Generators , 2010, VLSI Design.

[4]  Benny Pinkas,et al.  Cryptanalysis of the random number generator of the Windows operating system , 2009, TSEC.

[5]  Andreas Klein,et al.  Attacks on the RC4 stream cipher , 2008, Des. Codes Cryptogr..

[6]  Robert J. Harrison,et al.  A reconfigurable supercomputing library for accelerated parallel lagged-Fibonacci pseudorandom number generation , 2006, SC.

[7]  Benny Pinkas,et al.  Analysis of the Linux random number generator , 2006, 2006 IEEE Symposium on Security and Privacy (S&P'06).

[8]  Richard P. Brent,et al.  Fast and Reliable Random Number Generators for Scientific Computing , 2004, PARA.

[9]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[10]  Jun Makino,et al.  Lagged-Fibonacci Random Number Generators on Parallel Computers , 1994, Parallel Comput..

[11]  M. Luescher A portable high-quality random number generator for lattice field theory simulations , 1993, hep-lat/9309020.

[12]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[13]  Naomi S. Altman,et al.  Bit-Wise Behavior of Random Number Generators , 1988 .

[14]  G. Marsaglia,et al.  Matrices and the structure of random number sequences , 1985 .

[15]  W. Worlton,et al.  The Art of Computer Programming , 1968 .

[16]  Neal Zierler,et al.  Primitive Trinomials Whose Degree is a Mersenne Exponent , 1969, Inf. Control..

[17]  Neal Zierler,et al.  On Primitive Trinomials (Mod 2) , 1968, Inf. Control..

[18]  L. Hui Development of Cryptographic Random Number Generators , 2003 .

[19]  Ian Goldberg,et al.  Randomness and the Netscape browser , 1996 .

[20]  Norio Masuda,et al.  PRNGlib: A Parallel Random Number Generator Library , 1996 .

[21]  G. Marsaglia,et al.  Some Difficult-to-pass Tests of Randomness , 2022 .